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ABSTRACT
An integrated Markov Chain and Cellular Automata modelling (CA MARKOV), 
multicriteria evaluation techniques have been applied to produce transition 
probability. The unsupervised method was employed to classify the satellite 
images of year 1985, 1995, 2005 and 2015 to meet the magnitude of LULC 
change. Results showing the spatial pattern of the sub-basin is largely 
influenced by the biophysical and socio-economic drivers leading to growth 
of agricultural lands and built-up area in the basin. Simulated plausible future 
LULC changes for 2025 which is based on a CA MARKOV that integrates 
Markovian transition probabilities computed from satellite-derived LULC 
maps and a CA contiguity spatial filter (5 × 5). Further, the fragmentation 
analysis was performed to check the fragmentation scenario in the year 
2025. The result for year 2025 with reasonably good accuracy will be useful 
to the planners, policy- and decision-makers.

1. Introduction

Land use/land cover change (LULCC) modelling belongs to a rapidly growing scientific field because 
LULCC is one of the most important ways that humans influence the environment (Srivastava et al.,  
2012, 2014). It is also one of the important variables that results in global warming. Sometimes anthro-
pogenic activities lead to the development of unique and diverse habitats. However, when treatments 
ceases these patches becomes endangered by natural processes. Many LULCC studies on environ-
mental changes using spatial and social approach have been widely investigated. Subsequently, land 
use activities associated with humans have been recognized as an important driver of environmen-
tal change at different spatio-temporal scales (Basommi et al. 2016). Many authors have identified 
that agricultural, mining and mineral processing activities have extensive effects on the environment 
and natural resources. These processes involved in removal of vegetation, deforestation and soil dis-
placement have negative impacts on the environment (Singh et al. 2012). Furthermore, few studies 
suggest that tropical deforestation is associated with population and poverty (Lambin et al. 2001; 
Geist and Lambin 2002; Carr 2004; Carr et al. 2005; Chomitz et al. 2007). These drivers have high 
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rates of deforestation within a country and linked to population growth (Lambin et al. 2001; DeFries  
et al. 2010). DeFries et al. (2010) found that rural population growth is not associated with forest loss, 
indicating the importance of urban-based and international demands for agricultural products as 
drivers of deforestation. Moreover, the tropical deforestation is driven largely by changing economic 
opportunities linked to social, political and infrastructural changes (Lambin et al. 2001; Jha and Bawa 
2006). Intensity of these infrastructure developments presumable will increase in the form of roads, 
electrification, health services and/or potable water, which attracts land-seeking families, and con-
solidates occupation. The area witnessed an agricultural intensification (higher levels of fertilizer and 
pesticide inputs and increased output in quantity or value of cultivated or reared products per unit 
area and time), due to rapidly developing land scarcity may trigger increase in cropping frequency 
unmatched by appropriate changes in inputs or management, resulting in a ‘stressed’ ecosystem with 
stagnating or declining output. The rate of urbanization is high in the area thus affecting land use 
changes at other places through the transformation of urban–rural linkages. The large-scale urban 
agglomerations and extended peri-urban settlements have fragmented the landscapes of such large 
areas hence many ecosystem processes are threatened (Finenko et al. 2001; Lambin et al. 2001; Bogyó 
et al. 2015; Deák et al. 2016). Few large industrial and educational cities like Satna and Rewa attract 
a significant proportion of the rural population by way of permanent and circulatory migration, and 
the wages earned in the city are often remitted by migrants to rural homelands, in some cases trans-
forming the use of croplands and creating ‘remittance landscapes’ (Lambin et al. 2001) and for better 
educational facilities. The other most common reason of land use/land cover change is globalization, 
it amplifies or attenuates the driving forces of land use change by removing regional barriers and 
strengthening global at the expense of national connections (Lambin et al. 2001; Meyfroidt et al. 2013). 
After the globalization era 1990, many parts of India became connected to the world in economical 
perspective (Srinivasan 2001). The interconnectedness of places and people through, global markets, 
information, social media and capital flows, and international conventions enhance the land use/land 
cover change in the region.

A substantial amount of Earth’s surface and socio-economic data coupled with the ancillary data is 
a prerequisite for effective analysis, monitoring and modelling of land cover change. The synoptic data 
at finer scale are now available using remote sensing (RS) and is widely used by the researchers in the 
field of LULCC studies (Singh et al. 2010, 2012, 2013, 2015; Srivastava et al. 2013; Szabó et al. 2012) 
for resource management and planning. RS provides an excellent source of data, from which updated 
LULC information and changes can be extracted, analyzed and simulated efficiently (Singh et al. 2015). 
LULC mapping, derived from earth observation data-set, has long been an area of focus for various 
researchers; recent advances in GIS and RS techniques as well as methods have enabled researchers 
to model these changes effectively in a short period of time. Cellular Automata–Markov Chain model 
(CA MARKOV) is a robust approach for spatial and temporal dynamic modelling of LULCC because 
RS and GIS data can be efficiently incorporated in the process (Kamusoko et al. 2009; Steeb 2011; 
Singh et al. 2015). Cellular Automata (CA) is a popular technique which works on a logical principle 
‘what-if scenarios’ and uniform grid-based principle. It can be utilized in the management, planning, 
modelling and simulation of the spatial processes (Wu and Webster 2000; O’Sullivan 2001; Wu 2002; 
Irwin et al. 2009; Araya and Pedro 2010; Singh et al. 2015). The ability of CA to represent complex 
systems with spatio-temporal behaviour, drawing from a small set of simple rules and states, makes 
it suitable for modelling the spatial processes. According to Wang and Zhang (2001), biophysical and 
socio-economic data can be used to; (1) define initial conditions, (2) to parameterize the CA–Markov 
model, (3) to calculate transition probabilities and (4) to determine the neighbourhood rules with 
transition potential maps. In the Markov Chain and Cellular Automata modelling (CA MARKOV), 
the Markov Chain Model (MCM) component controls temporal dynamics among the LULC classes 
based on transition probabilities, while the spatial dynamics are controlled by local rules determined 
either by the CA spatial filter or transition potential maps. The potential application of the CA Markov 
in land use change modelling has been recognized by many researchers by combining biophysical 
and socio-economic data for simulation of accurate LULC in plausible future (Wang and Zhang 2001; 
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Chen 2006; Kamusoko et al. 2009; Guan et al. 2011; Jokar Arsanjani et al. 2011; Memarian et al. 2012; 
Jokar Arsanjani et al. 2013; Behera et al. 2012; Yang et al. 2014; Singh et al. 2015; Bacani et al. 2016; 
Yulianto et al. 2016).

The causes of fragmentation and habitat loss can be linked to agriculture and infrastructure devel-
opment, over-exploitation of natural resources, pollution and invasive species (Semwal 2005). At the 
landscape level, disturbance is related to patch structure, spatial arrangement, their size and duration 
(McGarigal and Marks 1995) and can be quantified using the spatial landscape metrics. Landscape 
metrics are the algorithms designed for quantifying landscape pattern depicting the spatial arrange-
ment of land cover patches over a particular geographic area (McGarigal and Marks 1995; Herold et al.  
2003; Singh et al. 2016; Lamine et al. 2017). These landscape and class level metrics can be used to 
see the impact of anthropogenic activities on natural cover, such as forest (Singh et al. 2014, 2016).

The objectives of the study are (1) to analyze the spatial and temporal changes in 1985–1995–2005–
2015, (2) to simulate and predict land use changes for years 2015 and 2025 based on CA MARKOV, 
(3) to perform fragmentation analysis, so as to enable development practitioners, planners, resource
managers and policy-makers effectively manage and tailor intervention for better management to
preserve the unique natural characteristics in the study area.

2. Materials and methods

2.1. Study area

Tons river basin has a great significance to states Madhya Pradesh and Uttar Pradesh in India, concern-
ing water resources aspects and the ecological balances (Kumar et al. 2017). The study area Tons River 
basin (also known as Tamsa River) is a sub-basin of the river Ganga which flows in between the states 
of Madhya Pradesh (MP) and Uttar Pradesh (UP) in Central India. The Tons river originates from a 
tank at Tamakund of the Kaimur hills at an elevation of 610 m in Satna district of MP at 23° 57′ and 
25° 20′ N latitudes and 80° 20′E to 83° 25′E longitudes (Figure 1) and it joins the river Ganga at Sirsa, 
about 311 km downstream of the confluence of river Ganga and Yamuna in UP. The total catchment 
area is 17,617 km2, out of which 11,974 km2 lies in MP and the remaining area 5643 km2 lies in UP.

The study area experiences a subtropical climate where total annual rainfall varies from 930 to 
1116 mm/year with mean annual rainfall 1099.2 mm/year and 90% falls during monsoon (June–
September) season with maximum numbers of rainy days in the months of July and August. The 
summer season (May–June) is hot with the daily maximum temperature up to 46 °C while winter 
season (December–January) is cool with minimum temperatures up to 5 °C and the mean annual 
temperature is about 25.65 °C. The wind speed in the region varies from 0.43 m/s (November) to 
1.29 m/s (June) with predominant wind direction from West to North West. The weather remains dry 
for all the seasons except monsoon when the humidity is around 80% while mean relative humidity 
varies from 29 to 80%. The soil type in study area is mainly deep black soil, shallow black soil and the 
mixed red black soil. The major land use of the area is agricultural land and main crops grown are 
wheat (major crop), rice, soybean, millets (minor crop) and pluses under popular cropping pattern of 
wheat–pulses and rice–wheat–pulses. The geology of region shows rocks of Vindhyan system, these 
are further subdivided into three series namely, the Bhander, the Rewa and the Kaimur (Wadia 1975). 
The Kaimur series of rocks are composed of the Upper Kaimur sandstone, the Kaimur conglomerate, 
the Bijaigarh shales, the lower Kaimur sandstone and the suket shales (Yadav et al. 2014).

2.2. Data-sets

Satellite images and socio-economic statistical data were collected as of 1985, 1995, 2005 and 2015. 
Landsat satellite data-sets of the years 1985, 1995, 2005 and 2015 were employed for land use mapping 
purposes due to their medium spatial resolution (Table 1). Land cover maps of the years 1985, 1995, 
2005 and 2015, were derived from Landsat TM and ETM+ (acquired on 24 August 1985, 1 August 
1995, 18 August 2005, and 2015). Furthermore, collateral and ancillary data, such as a digital elevation 
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model (DEM) of SRTM, major road networks and images were integrated into the analyses. The 
adopted methodology of the study is shown by Figure 2.

2.3. LULC map preparation

Classification scheme of Anderson et al. (1976) and National Remote Sensing Centre (2014) was 
applied to classify the satellite images as deciduous forest, mixed forest, crop land, water bodies, 
built-up area, fallow and barren land. The LULC classification was performed using unsupervised 
classification technique because it allows the spectral clustering which gives high degree of objectivity 

Figure 1. location map of the study area.
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without prior knowledge or training site data-sets of the study area. The classified maps for practical 
purpose need the accuracy assessment and therefore classification accuracy assessment was performed 
for each LULC maps based on the collected ground control points using Garmin eTrex@ 10 Global 
Positioning System (GPS) with ±15 m positional accuracy and addition information from public 
domain software i.e. Google Earth. The regular field visits and surveys were made for the collection 
of ancillary, collateral data. The spatial layers of ancillary database including different socio-economic 
and biophysical drivers of LULC change were prepared using data from Indian Census, statistical 

Figure 2. the flow chart is depicting the adopted methodology of the research work.
notes: the first phase shows the pre- and post-processing of different data-sets used in work, followed by the calibration and validation of ca–Markov 
model for simulating the plausible future 2025. Subsequently, the fragmentation was studied for 1985, 1995, 2005, 2015 and 2025 to know the trend 
of land use land cover after calculating the landscape metrics.

Table 1. Satellite data specifications.

Year Satellite/sensor
Spatial resolution 

(m) Path/row
Used band  

combination
Date of data/data 

access

1985 landsat, tM 30 142/42, 142/43, 
143/42, 143/43, 

143/44,144/42,144/43

1, 2, 3, 4, 5, 7 24 august

1995 landsat, tM 30 142/42, 142/43, 143/42, 
143/43, 143/44, 144/42, 

144/43

1, 2, 3, 4, 5, 7 1 august

2005 landsat, etM+ 30 142/42, 142/43, 143/42, 
143/43, 143/44, 
144/42,144/43

1, 2, 3, 4, 5, 7 18 august

2015 landsat 8 30 142/42,142/43,143/42,143/
43,143/44,144/42,144/43

1, 2, 3, 4, 5, 7 9 June
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handbook and various other government agencies (Table 2). The CA MARKOV with MCE approach 
was employed for the prediction of the future LULC dynamics in the sub-basin.

2.4. Accuracy assessment

The accuracy assessment of the different thematic maps produced was checked from the classifiers. It 
was performed based on the computation of the error matrix statistics (Congalton and Green 1999). 
As a result, the overall accuracy (OA), user’s accuracy (UA), producer’s accuracy (PA) and the kappa 
coefficient (Kc) were computed, using (Congalton and Green 1999) following expressions (1–4):

where nii is the number of pixels correctly classified in a category; N is the total number of pixels in 
the confusion matrix; r is the number of rows; and nicol and nirow are the column (reference data) and 
row (predicted classes) total, respectively.

3. Land use/land cover change modelling

3.1. CA–Markov chain model description

The CA MARKOV describes the probability of land cover change between previous (t1) and later 
time (t2) periods by developing a transition probability matrix between them (Jokar Arsanjani et al. 

(1)OA =

1

N

r
∑

�=1

n
ii
,

(2)PA =

n
ii

n
icol

,

(3)UA =

n
ii

n
irow

,

(4)K
c
= N

r
∑

�=1

n
ii
−

r
∑

�=1

n
icol

n
irow

N
2

−

r
∑

�=1

n
icol

n
irow

,

Table 2. Socio-economic and physiognomic data used in the study.

Sl. No. Data type Year of data Data source

Socio-economic data
1 Population 1981,1991, 2001, 2011 census of India (http://censusindia.

gov.in/)
2 residential and industrial  

development
1981,1991, 2001, 2011 Statistical handbook

3 topographic sheets topo map and reference map, Survey of India (SoI), India (www.surveyofin-
dia.gov.in)

4 total area under summer and winter 
crops

1981,1991, 2001, 2011 Statistical handbook

Physiognomic data
1 Drainage network SrtM DeM (http://www.cgiar-csi.org/)
2 Slope SrtM DeM (http://www.cgiar-csi.org/)
3 Soil map Food and agriculture organisation (Fao) rome, Italy, national Bureau of Soil 

Survey and land Use Planning (nBSS &lUP), nagpur, Maharashtra, India 
(https://www.nbsslup.in/)

4 Geological maps Geological Survey of India, India (http://www.portal.gsi.gov.in)
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2011, 2013; Singh et al. 2015). The probabilities may be accurate on a per category basis, but there 
is no knowledge of the spatial distribution of occurrences within each land cover class, therefore to 
incorporate the spatial character to the model, CA is integrated into the Markovian approach. The 
CA allows the transition probabilities of one pixel to be a function of the adjacent pixel. Developing a 
transition probability matrix for each of the land cover classes between the years 2005 and 2015 was 
the first step, and this in turn was used as an input for modelling land cover change. In addition, two 
types of criteria (constraints and factors) were developed for the determination of suitable lands to be 
considered for further development (Jokar Arsanjani et al. 2011, 2013). The Boolean character such 
as 0 and 1 were used for the standardization of the constraints and the factors were standardized to 
a continuous scale of suitability from 0 (least suitable) to 255 (most suitable). Existing built-up areas 
and water bodies are the two constraints for the standardization. These constraints were standardized 
into continuous variables by applying Sigmoidal, J-shaped and linear functions. A transition suita-
bility image collection was developed using the suitability maps derived from the two criteria using 
the scaling approaches.

3.2. Suitability analysis

Suitability means quality of having the properties that are appropriate for the specific purposes and 
suitability analysis is a process which identifies the most appropriate spatial pattern of future LULC 
according to purpose. The criteria for different LULC categories would have different suitability like 
the criteria for urban suitability would be different than agricultural suitability due to which in each 
case the suitable places have different features (Malczewski 2004). In the present study, the suitability 
of urban expansion and its impacts on other land use categories have been assessed.

3.2.1. Multicriteria evaluation
According to Pontius and Schneider (2001), the multicriteria evaluation (MCE) approach is a decision 
support tool used in GIS to combine the variables with different methodologies which intern trans-
formed into suitability map output. Practically, it is impossible to find a single solution for multiple 
objective problems of any area that can fulfil all of the objectives simultaneously. In case of any alter-
ation induced due to increase in population or development, we need to take decisions which may 
include site selection or land allocation decisions that can satisfy multiple objectives, each relating to 
its own suitability level of land conversion (Soe and Le 2006; Behera et al. 2012). In order to achieve 
the objectives used MCE approach that deals with the situation in which a single decision-maker is 
faced with a multiplicity of usually incompatible criteria or in which a number of decision-makers must 
consider criteria, each of which depends on the decision of the decision-makers (Ademiluyi and Otun 
2009). The criteria weight for each land use category was obtained from pairwise comparison matrix 
of Saaty (1980) using geometric mean method whose sum is equal to 4. Finally, suitable maps of each 
LULC categories were prepared in MCE module using Weight Linear Combination (WLC) algorithm 
incorporated with criteria classes, criteria weight and constraints (Figure 3a). WLC method is simply 
a weighted overlay operation of the different criterion. The main part of the process is the weight 
allocation to the factors and application of these factors and constraints during the overlay analysis.

The fuzzy set membership approach was used for the standardization of the factors. In suitability 
analysis, the fuzzy logic helps us to standardize the variables, especially when we deal with the prox-
imity issue (Jiang and Eastman 2000). The fuzzy set functions may be Sigmoidal, J-shaped and Linear, 
and for this study monotonically increasing linear membership function was applied (Eastman 2009). 
The weight decision was applied according to the probability of transition of land. The application of 
MCE technique requires criteria development for decision-making about various land uses. In this 
study, we integrated different types of data viz. socio-economic data with biophysical data of sub-basin 
through MCE technique using main criterions Factors and Constrains.

This work utilized two constraints mainly existing settlement and water bodies, because generally 
new developmental activities cannot thrive on the water bodies and existing settlement areas. The 
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water bodies are considered as a constraint for all the LULC classes of the study area except water 
body. These constraints were expressed in the form of a Boolean map in which areas excluded from 
consideration were coded with zero and those included for consideration were coded with one as 
shown in the Figure 3b. Further these images were added up to produce a single suitability image for 
each land class. Here total five different factors were considered as driving forces or decision variables 

Figure 3a. transitional Suitability maps for different lUlc classes using Mce module (Weight linear combination Method, Wlc).
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Not permitted for change 
Permitted for change 

Figure 3b. constraints of built-up & water bodies using Mce module (Boolean intersection method, BIM).
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for LULCC, viz. population, settlement, residential development, industrial development, agricultural 
expansion, slope, drainage network and different associated LULC classes and the WLC technique 
in MCE was used.

4. Implementation and validation of the model

Model calibration and validation is an important step (Singh et al. 2015) in any modelling process 
although there is no consensus on the criteria to assess the performance of land use change models. 
One way to quantify the predictive power of the model is to compare the result of the simulation (2015) 
to a reference or real map (2015) using Kappa variations (Singh et al. 2015): Kappa for no information 
(Kno), Kappa for location (Klocation) and Kappa for quantity (Kquantity). Kno, which is variation of 
the standard Kappa index of agreement, provides the overall accuracy of a simulation run. The other 
two indices Klocation and Kquantity, validate the simulations ability to predict location and quantity, 
respectively (Pontius and Schneider 2001). The simulation’s success rate is perfect when Kno, Klocation 
and Kquantity are equal to 1 and if these indices values are equal to 0 it means the simulation’s success 
rate is imperfect or unsatisfactory (Pontius 2000). Kno indicates the proportion classified correctly 
relative to the expected proportion classified correctly by a simulation with no ability to accurately 
specify the quantity or location. Klocation represents the success due to a simulation’s ability to specify 
location divided by the maximum possible success due to a simulation’s ability to specify location per-
fectly. Kquantity is defined as a measure of validation of the simulations to predict quantity perfectly. 
The predictive power of a model is considered strong when its efficiency is greater than or equal to 
80% and then it is useful to make future projections (2025) assuming that the transition mechanism 
verified between 2005 and 2015 is going to be repeated.

5. Landscape fragmentation analysis

We revealed the trend of changes of LULC types with standardized Principal Component Analysis 
(PCA) (where calculation was conducted with the correlation matrix of the variables). Percentage of 
Landscape (PLAND), Patch Density (PD), Largest Patch Index (LPI), Shape Index (SHAPE), Euclidean 
Nearest Neighbour Distance (ENN) and Effective Mesh Size (MESH) were involved in the analysis 
as the indices of area, shape, and distance and fragmentation metrics were computed with the help of 
FRAGSTAT3.3 (McGarigal et al. 2002). PCA reduced the number of variables (i.e. landscape metrics) 
and Varimax rotation was used to obtain uncorrelated principal components (PC). Numbers of PCs 
were determined by the Kaiser’s rule retaining those ones which eigenvalue was 1< (Jolliffe 2002). 
These metrics values were used to delineate the component scores and distinguished both the dates 
and the land cover types. The SPSS 22 used for the statistical calculations.

6. Result and discussion

6.1. Existing land use/cover change

LULC change dynamics of Tons river basin was studied for during the period of 1985–1985–2005–
2015. The study area has witnessed increased urbanization and change in different LULC. The results 
of the accuracy assessment of the classified imageries of the year’s 1985, 1995, 2005 and 2015 indicates 
that the land use changes have been accurately identified and extracted during the classification, 
which is also confirmed by the overall accuracies and Kappa indices (Table 3). The overall results of 
LULC distribution for years 1985, 1995, 2005 and 2015 shows that the crop land (CL) is the primary 
dominant land cover category (Table 4) followed by the deciduous forest (DF) which is the secondary 
dominant land cover category in the study area. The deciduous forest shows an overall decreasing 
trend, while mixed forest (MF) shows the increasing trend over the study period. There has been a 
significant increasing trend observed in the built-up land (BU). More precisely (Table 4), the built-up 
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area increased from 52.46 km2 in 1985 to 74.13 km2 in 1995, 99.85 km2 in 2005 to 454 km2 in 2015. This 
increase probably took place due to increase in population, widening of highways, set up of new small 
and large-scale industries in the region and also mining activities for cement material. The deciduous 
forest area decreased from 2842.50 km2 in 1985 to 2825.22 km2 in 1995, 2784.30 km2 in 2005 and 
continued to decrease 2524 km2 in 2015. This decrease in areal extent of deciduous forest is mainly 
due to its partial conversion into crop land to improve the sustainability of local people of the region 
and also the conversion into mixed forest. The mixed forest area is 110.07 km2 in 1985, 185.82 km2 in 
1995, 191.37 km2 in 2005 and 1732 km2 in 2015. The increase in mixed forest area is due to conversion 
of deciduous forest into mixed forest and also due to afforestation in the barren land. The crop land 
showed the continuous decrease 13,271.71 km2 in 1985, 13,248.04 km2 in 1995, 13,252.49 km2 in 2005 
and 11,309 km2 in 2015, this is due to conversion of crop land into other classes. This may be due to 
classification error. The area of barren land has decreased from 459.58 km2 in 1985 to 450.65 km2 
in 1995, 481.10 km2 in 2005 and further decreased up to 343 km2 in 2015, which can be attributed 
to conversion into crop land, urbanization, some reforestation and industrial activities. The shrub 
land has area of 1239.47 km2 in 1985, 1165.91 km2 in 1995, 1178.52 km2 in 2005 and 1453.94 km2 in 
2015. The shrub land showed slight increase in total area mainly due to conversion of other land use 
land cover classes into shrub land. Some change in water body class was also seen, which increased 
from 285.12 km2 in 1985 to 311.15 km2 in 1995 and again it showed decreased in area 273.29 km2 in 
2005 and again increased to 445 km2 in 2015. This increase in water body is due to more number of 
water tanks and ponds in the region. Overall deciduous forest continues to decrease 2322.75 km2 in 
2025, mixed forest areas increase 252.91 km2 in 2025, crop land projected to decrease 11,531.4 km2 
in 2025 is due to expansion of national highways, road and cities. The shrub land area will increase 
to 1459.47 km2 in 2025. The model has estimated the increase in water bodies total area 1196.41 km2 
in 2025; this probably may be due to creation of new dam, check dam and emergence of other water 
storage structure in the region. The built-up area will increase to 852.16 km2 in 2025, due to widen-
ing of road, more horizontal expansion of cities and set up of industries. Studies by Temesgen et al. 
(2017) in Geleda catchment and Solomon et al. (2014) in Koga watershed also reported the growth of 
cultivated lands at the reduction of forest cover in the respective study periods.

6.2. Land cover modelling and validation

Analysis of the modelling results (Figure 4(a)–(f)) showed that the simulated map for the year 2015 
is reasonably similar to the satellite derived map of 2015. A more detailed analysis was accom-
plished using the Kappa variations. The closer the values of these indices are to 100%, the stronger 
the agreement is between two maps. The Kno, which also gives the overall accuracy of simulation, 

Table 3. accuracy assessments of classified lUlc maps for the years 1985, 1995, 2005 and 2015.

LULC 
classes

1985 1995 2005 2015

Producer’s 
accuracy 

(%)

User’s 
accuracy 

(%)

Producer’s 
accuracy 

(%)

User’s 
accuracy 

(%)

Producer’s 
accuracy 

(%)

User’s 
accuracy 

(%)

Producer’s 
accuracy 

(%)

User’s 
accuracy 

(%)

Deciduous 
forest

84.62 91.67 91.67 93.33 85.71 85.71 93.33 87.50

Mixed forest 100.00 80.00 66.67 76.92 71.43 83.33 72.73 94.12
crop land 94.12 87.67 93.06 89.33 87.06 93.67 96.67 95.08
Barren land 66.67 100.00 66.67 66.67 96.67 70.73 90.91 83.33
Shrub land 35.71 100.00 46.67 70.00 50.00 80.00 62.50 27.78
Built-up 96.88 73.81 83.33 80.00 100.00 100.00 100.00 88.89
Water body 70.03 93.33 100.00 80.00 90.91 100.00 100.00 100.00
overall 

accuracy
85.09 83.95 86.88 83.85

Kappa 
accuracy 

0.7964 0.7809 0.8051 0.7993
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Figure 4. (a–e) land use land cover map of year of 1985, 1995, 2005, 2015 (real), 2015 (predicted) and 2025 (predicted), the dominant 
class is crop land.
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is calculated to be 79.67%. The model performed very well in the ability to specify location cor-
rectly (KlocationStrata = 65.87%), and Kstandard 58.85% and also in the ability to specify quantity 
(Kquantity = 87.95%). It is important to note that some discrepancies are evident between the real and 
simulated land cover maps of 2015. This could be due inadequate suitability maps for modelling the 
phenomenon, generalizations applied for image classification results and the shape of the contiguity 
filter used. The suitability maps have been used as rules during the modelling process and have had 
a great influence on the result. Results are also sensitive to the constraints and factors employed to 
define the rules. After defining the parameters used for the calibration and modelling and assessing the 
validity, it was interesting to examine the pattern and tendency of change in a long-term simulation. 
Therefore, land cover projection for 2025 was performed in the same way. A cross-tabulation that 
describes the changes in land cover classes (Table 5). CA–Markov model has the ability to simulate 
transition among any number of classes and the nature of the simulation is bidirectional. Two classes 
(BL and WB) are not included in the matrix because the model did not predict any changes for 2025. 
The diagonal of the matrix indicates the number of pixels that have persisted during the simulation, 
while the off-diagonal shows the number pixels that changed for each class.

6.3. Simulated land use land cover change

6.3.1. LULC transition probabilities and transition matrix of year 2015 (simulated)
A transition area matrix records the number of cells or pixels that are expected to change from each 
LC class to the other over the next period of time. The transition probability presented in Table 6 
shows that the deciduous forest has 98.44% probability of remaining as deciduous forest and very 
low probability to change into other classes. The mixed forest shows 99.96% probability to remain as 
mixed forest it suggests that this class is very much stable due to application of conservation measure 
and proper management of forest. The probability for crop land to remain as crop land is 99.54% while 
its probability to change in shrub land, built-up and water bodies are having very low probability to 
change, respectively. The probability of change of barren land into 99.64% shows that is stable class. 
The shrub land has 97.09% probability to remain as shrubland. The built-up shows 100% probability 
to remain as built-up. The water bodies have 73.65% probability to remain as water bodies. The water 
body class has high chance to change into other classes. Table 7 explains the expected transition in 
2015 in number of pixels of each class to other classes.

Table 5. classification agreement/disagreement according to ability to specify accurately quantity and location.

Information of quantity

Information of location No [n] None Medium [m] Perfect [p]

Perfect[P(x)] P(n) = 0.3814 P(m) = 0.9549 P(p) = 1.0000
PerfectStratum[K(x)] K(n) = 0.3814 K(m) = 0.9549 K(p) = 0.9772
MediumGrid[M(x)] M(n) = 0.3222 M(m) = 0.8258 M(p) = 0.8158
MediumStratum[H(x)] H(n) = 0.1429 H(m) = 0.5765 H(p) = 0.6005
no[n(x)] n(n) = 0.1429 n(m) = 0.5765 n(p) = 0.6005

Table 6. Probability of lUlc changes in 2015 in percentage.

2005/2015 DF MF CL BL SL Built-up W

DF 0.9844 0.0007 0.0062 0.0004 0.0037 0.0006 0.0041
MF 0.0001 0.9996 0.0000 0.0000 0.0000 0.0000 0.0003
cl 0.0000 0.0001 0.9954 0.0002 0.0005 0.0015 0.0022
Bl 0.0000 0.0000 0.0000 0.9964 0.0035 0.0001 0.0000
Sl 0.0027 0.0020 0.0131 0.0061 0.9709 0.0025 0.0027
Built-up 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000
W 0.0000 0.0001 0.1028 0.0676 0.0902 0.0028 0.7365
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6.3.2. LULC transition probabilities and transition matrix of year 2025 (Future LULC)
Tables 8a, 8b shown below demonstrates the number of pixels that are expected to change from 2005 
to 2025. Two classes (barren land and water body) are not included in the matrix because the model 
did not predict any changes for 2025. The diagonal of the matrix indicates the number of pixels that 
have persisted during the simulation, while the off-diagonal shows the number pixels that changed 
for each class.

From Table 8a, 64.31% of the dense forest probability will remain as dense forest which signifies 
its stability though it has 22.80% probability to change into the crop land and 7.97% probability to 
change into shrub land which would be a result of the increasing demand of food, fodder and fuel 
by the growing population of the region. The probability of mixed forest to remain as mixed forest is 
42.53% though it shows a 23.30% probability of change into crop land and 14.92% to become decid-
uous forest. Crop land has as high as 92.33% probability to remain as crop land however it has 1.17% 
probability to change to built-up, 3.17% probability to change into shrub land. The change of crop 
land into built-up may be attributed to the demand of the habitat by the growing population. Shrub 
land has 21.97% probability to remain as shrub land and it has 50.47% probability to change into 
crop land which could be a result of over agricultural practice to meet the demand of food and fodder 
of the growing population. The built-up also has a probability as high as 96.89% to remain as BL which 
signifies its stability. Water bodies seems to be highly unstable with 29.68% probability to remain as 
water body while it has 56.02% probability of changing into crop land which may not however be a 
true projection of this class except there is an occurrence of drought in the region.

From Table 8b, the deciduous forest showed 1,681,340 number of pixels remains into deciduous 
forest class while 101,600 and 59,601 pixels of deciduous forest will change into mixed forest and crop 

Table 7. expected to transition in 2015 in number of pixels.

2005/2015 DF MF CL BL SL Built-up W

DF 3,045,383 2035 19,300 1172 11,316 1728 12,742
MF 13 212,559 2 0 0 0 66
cl 6 1595 14,657,790 3138 7279 22,634 32,544
Bl 0 0 1 532,626 1861 68 0
Sl 3548 2597 17,165 8035 1,271,370 3210 3544
Built-up 0 0 0 0 0 110,947 0
W 12 21 31,220 20,517 27,405 840 223,646

Table 8a. Probability of lUlc changes in 2025 in percentage.

2005/2015 DF MF CL BL SL Built-up W

DF 0.6431 0.0389 0.2280 0.0065 0.0797 0.0005 0.0034
MF 0.1492 0.4253 0.2330 0.0090 0.1787 0.0026 0.0021
cl 0.0176 0.0044 0.9233 0.0045 0.0317 0.0117 0.0068
Bl 0.0609 0.0354 0.5884 0.0704 0.1979 0.0088 0.0382
Sl 0.1608 0.0393 0.5047 0.0413 0.2197 0.0110 0.0231
Built-up 0.0086 0.0056 0.0026 0.0019 0.0072 0.9689 0.0052
W 0.0821 0.0043 0.5602 0.0181 0.0257 0.0127 0.2968

Table 8b. Probability of lUlc changes in 2025 in number of pixels.

2005/2015 DF MF CL BL SL Built-up W

DF 1,681,340 101,600 59,601 1704 208,310 1416 8769
MF 48,541 138,349 75,784 2938 58,123 861 693
cl 271,097 67,296 14,260,272 69,370 490,367 182,163 104,505
Bl 13,411 7785 129,505 15,490 43,565 1927 8408
Sl 191,840 46,927 602,085 49,321 262,087 13,173 27,610
Built-up 1950 1257 593 424 1625 218,705 1164
W 21,452 1131 146,287 4727 6716 3328 77,515

1216 S. K. SINGH ET AL.
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land, respectively, up to 2025. This is due to increasing population pressure in the area. The mixed forest 
138,349 pixel will remain in the mixed forest class while 693 pixels will change into water bodies. The 
crop land 14,260,272 pixels will remain in the crop land class while 104,505 and 182,163 pixels will 
change into water bodies and built-up. The barren land showed that 15,490 pixels will remain in the 
same class while 43,565 pixels will change into shrub land class. Shrub land showed that 262,087 pixels 
will remain in the same class while 602,085 pixels will transforms into crop land. The built-up showed 
that 218,705 pixels will remain intact. The water bodies 77,515 pixels will remain in water bodies and 
only 146,287 pixels will change into crop land. There could be some uncertainty in prediction might 
be due to imagery quality, classification error and resolution of the sensors (Singh et al. 2015). Table 8c  
show the expected to transition in 2025 in number of pixels from 2015.

6.4. Fragmentation analysis and trends of land cover change

PCA explained 85.8% of the total variance. LPI, MESH and PLAND were in strong positive correlation 
and in strong negative correlation with ENN (Figure 5) and these metrics formed PC1 accounting 

Figure 5. Biplot diagram of landscape metrics of ton basin (legend: 1: crop, 2: shrub, 3: water body, 4: barren, 5:built-up, 6: mf, 7: df; 
blue: 1985; red: 1995; green: 2005; d: 2015; coral: 2025).

Table 9. rotated component matrix of the landscape metrics.

Landscape metrics PC1 PC2

MeSH 0.983 −0.119
lPI 0.974 −0.078
PlanD 0.918 −0.257
enn −0.692 0.491
SHaPe 0.039 0.855
PD 0.385 −0.772
Variance explained 56.4% 29.4%

1218 S. K. SINGH ET AL.



for the 56.4% of the variance. SHAPE and PD correlated with each other and formed PC2 accounting 
for the 29.4% of the variance (Table 9). Usually, values of landscape metrics composed groups for the 
dates of 1985–1995–2005–2015 in most land cover types (except water bodies). However, from 2005 
to 2025 a large increase can be predicted along the axis of PD and SHAPE metrics especially in case of 
built-up areas and water bodies. It means that while built-up areas increase, patches density and shape 
index decrease, i.e. smaller water bodies can disappear. Water bodies’ area (including its proportion 
and largest patches and effective mesh size) will decrease while ENN increases and PD also decreases. 
Area of barren land is predicted to increase.

7. Conclusions

The main advantage of this work is to integrate the land use change modelling with fragmentation 
for better understanding of the land use/land cover change and fragmentation of the land cover 
classes. Majority of the studies focused on application of CA–Markov Model to predict the plausible 
future. Satellite derived land use land cover maps (1985, 1995, 2005 and 2015), biophysical and socio- 
economic data were used in CA–Markov modelling to know the plausible future land use/land cover 
area of the region. Model calibration justified that the accuracy (83%) is appropriate for prediction. The 
CA–Markov model simulated future LULCC up to 2025 by projecting an increase in built up/barren 
land areas. Results also indicate that if the current LULC trends continues without implementation 
of holistic sustainable development policies by participation of all the stakeholders, it can affect the 
rural sustainability. PCA pointed on the trend of changes of class level landscape metrics: modelled 
data reflected the general decrease in patch density (PD) and shape complexity (SHAPE), and the 
stagnation of fragmentation (MESH), largest patches (LPI) and nearest distances (ENN). The future 
knowledge about the land fragmentation will help in protecting the natural resources. In light of land 
degradation problems in a country like India, the simulated future LULC maps may provide a strategic 
guide to rural land use planning, effective efforts to reduce deforestation. Furthermore, the simulated 
future LULC maps can serve as an early warning system of the future effects of LULCC while the 
model has successfully simulated future LULCC. The biophysical factors of Tons river basin includes 
namely local micro meteorology (climate and weather), topography, bedrock and soil type, type of 
vegetation, cropping pattern, surface water and groundwater. The socio-economic drivers determines 
the choice of land use and decisions to change it are influenced by the size of the household, age, gen-
der, education, employment, attitudes, values and personal traits of household members, site-specific 
conditions – accessibility and migration. LULCC will depend, on the dynamic relationships among 
these factors, thus future study should attempt to identify the types of relationship and also to include 
policy-related factors in the simulation of future LULCC.
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