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• Mortality rate rises sharply during tem-
perature extreme, both for cold & heat
wave.

• During heat wave relative risk of mor-
tality rises especially for female and in-
fant.

• For different lag days excess mortality
was noted during winter compared to
summer.

• Compounded effect of temperature ex-
treme considerably increased for air
pollution

• Decrease in DTV has a negative impact
on mortality, especially for males.
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Exposure-response relationship of maximum,mean, minimum and apparent temperature and diurnal tempera-
ture variability.
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Climate extremes are often associated with increased human mortality and such association varies considerably
with space and time.We therefore, aimed to systematically investigate the effects of temperature extremes, daily
means and diurnal temperature variations (DTV) on mortality in the city of Varanasi, India during 2009–2016.
Time series data on daily mortality, air quality (SO2, NO2, O3 and PM10) and weather variables were obtained
from the routinely collected secondary sources. A semiparametric quasi-Poisson regression model estimated
the effects of temperature extremes on daily all-cause mortality adjusting nonlinear confounding effects of
time trend, relative humidity and air pollution; stratified by seasons. An effect modification by age, gender and
place of death as semi-economic indicator were also explored. Daily mean temperature was strongly associated
with excess mortality, both during summer (5.61% with 95% CI: 4.69–6.53% per unit increase in mean tempera-
ture) and winter (1.53% with 95% CI: 0.88–2.18% per unit decrease in mean temperature). Daily mortality was
found to be increased by 12.02% (with 95% CI: 4.21–19.84%) due to heatwave. The DTV has exhibited downward
trend over the years and showed a negative association with all-cause mortality. Significant association of mor-
tality and different metric of temperature extreme along with decreasing trend in DTV clearly indicate the
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potential impact of climate change on human health in the city of Varanasi. The findingmaywell be useful to pri-
oritize the government policies to curb the factors that causes the climate change and for developing earlywarn-
ing system.

© 2019 Elsevier B.V. All rights reserved.
1. Introduction

Recent evidences of extreme weather events including heat,
drought, and heavy precipitation have raised public and scientific inter-
est in exploring potential adverse effects of climate-related events on
human health. These climate-related events influence human health ei-
ther by direct and/-or indirect exposure or through economic and social
disruption (Smith et al., 2014). The adverse impacts of temperature ex-
tremes like heatwaves and cold spells have been projected bymany re-
searchers,mainly over America (Kent et al., 2013; Sheridan et al., 2009),
Asia (Lim et al., 2012; Wang et al., 2013; Mall et al., 2017), Australia
(Bennett et al., 2014) and Africa (Egondi et al., 2015) with diverse in-
crease in mortality rates (Gosling et al., 2009; Basu and Samet, 2002;
Li et al., 2015). With the rise in global mean temperature, it has been
projected with reasonable confidence that by the end of the 21st cen-
tury heatwaveswill bemore intense,more frequent andwill last longer
(Diffenbaugh and Scherer, 2011; Field, 2014). In contrast, low tempera-
ture events are expected to be exceedingly rare (Collins et al., 2013). In
agreement with these projections, temperature extremes have consid-
erably increased in several regions and vowed to be evenmore frequent
in near future (Kirtman et al., 2013). Thus, understanding the effects of
temperature extremes on human health is crucial for a country like
India, owing both for its susceptibility to changing climate and for hav-
ing low population resilience.

Several epidemiological investigations have linked heat wave with
impacts on human health, including mortality (Kent et al., 2013; Guo
et al., 2017) and morbidity (Carreras et al., 2015; Knowlton et al.,
2008). Other studies claimed that heat waves have no added effects
on human health (Gasparrini and Armstrong, 2011). Recent heat
waves in Europe during 2003, 2007 and 2010 (Åström et al., 2013;
Barriopedro et al., 2011), in Russia during 2003 and 2010 (Han et al.,
2017; Luterbacher et al., 2004), in California during 2006 (Knowlton
et al., 2008), and in India during 2010, 2013 and 2015 (Mazdiyasni
et al., 2017) led to numerous epidemiological studies with diverse con-
clusions. In contrast, cold spells related mortality is mostly under re-
ported (Chen et al., 2017; Guo et al., 2014). Increased mortality during
heat or cold events has been mainly attributed to cardiovascular dis-
eases (CVD), cerebrovascular and chronic respiratory diseases (RD,
Kilbourne, 1999; Gosling et al., 2017; Hajat et al., 2014). Heat waves
are reported to increase blood viscosity (due to dehydration), cardiac
output and blood cholesterol, resulting in blood clot, hypotension and
endothelial cell damage, especially for peoplewith pre-existing atrial fi-
brillation (Cheng and Su, 2010). In contrast, cold stress influences vaso-
constriction and high blood pressure, sympathetic nervous activities,
platelet aggregation and red blood cell count (Cheng and Su, 2010).
Symptoms may further aggravate in combination with air pollution
and humidity (Yang et al., 2019), while population demographics, sus-
ceptibility, physiologic acclimatization and socio-economic resilience
also influence the severity of the effects (Kinney et al., 2008).

Possible association of heat stress with human mortality has been
explored by many researchers, suggesting considerable spatial/-
community level variations (Anderson and Bell, 2009; Guo et al.,
2012) and temporal/-seasonal implications (Bennett et al., 2014;
Carson et al., 2006). Comparison of such impacts among different stud-
ies is however complicate, as they usually differ in terms of climatic
zones (tropical/temperate), methodology (time-series/case-crossover
design), and population resilience. Besides, scientific evidence on the ef-
fect of extreme temperature on the public health in countries with de-
veloping economy are extremely rare. This has emphasized the need
to initiate a comprehensive research on the possible influence of ex-
treme temperatures on premature mortality in Varanasi, located at the
heart of Indo-Gangetic Plain (IGP), South Asia. The region is reported
to have influenced by very high pollution load, both in terms of airborne
fine particulates (Kumar et al., 2017, 2018; Singh et al., 2017; Mhawish
et al., 2017, 2019; Dey and Di Girolamo, 2011) and short-lived climate
pollutants (Shukla et al., 2017; Singh et al., 2018). Therefore, daily all-
cause mortality, air quality and meteorological variables were explored
for 2008–2017, to assess if extreme temperature and the diurnal tem-
perature variation (DTV) have any influence on mortality. Possible im-
plications of such analysis may be in developing early warning
systems, robust adaptation policies and for improving mitigation
strategies.

2. Data and methods

2.1. Study area

Varanasi city (25°16′N, 82°59′E; 82 m MSL) is located in the center
of the Indo-Gangetic plain of Northern India (Fig. 1). The city typically
witnesses humid subtropical climate with four distinct seasons: cold
and moist winter (DJ), warm and dry summer (pre-monsoon, MAMJ),
monsoon (JAS), and post-monsoon (ON). The maximum temperature
reaches up to 46 °C in the summer months while minimum tempera-
ture usually drops as low as 2 °C during winter (Murari et al., 2017).
The city occasionally witnesses a distinct hot and dry heatwave (locally
referred as Loo) during summer, and cold spells during winter.
Varanasi's urban agglomeration supports a huge population (12million
in year 2011; MHA, 2011), with a very high population density (14,598
Km−2) and frequent influx of pilgrims and tourists (Table S1).

2.2. Data availability

Daily mortality data for 2009–2016 (all inclusive) was collected
from the office of Municipal Corporation of Varanasi. The dataset in-
cludes: 1. date of death, 2. cause of death classified according to the
10th revision of the International Statistical Classification of Diseases
and Related Health Problems (ICD-10), and 3. the residence location,
4. place of death. Mortality data was classified into all-cause mortality
(ICD-10 codes A00–R99), cardiovascular diseases (ICD-10 codes I00–
I99) and respiratory diseases (ICD-10 codes J00–J98), according to the
gender (male/female), age (≤4, 5–44, 45–64, ≥65 years) and place of
death (institutional and non-institutional deaths). Daily meteorological
data (daily minimum, maximum and mean temperature; relative hu-
midity, RH) was obtained from the India Meteorological Department,
New Delhi. Ambient air quality in terms of PM10, SO2, NO2 and
ground-level O3 concentration from 2009 to 2016 was assessed from
Real-time Air Quality Data inventory of the Central Pollution Control
Board (https://app.cpcbccr.com/ccr). The air quality monitoring station
is in the city center and is mainly influenced by emissions from residen-
tial and commercial activities (Singh et al., 2018). Hourly concentration
of individual pollutants was initially checked for data quality and out-
liers, and further averaged to 24 h.

2.3. Statistical methods

Daily mortality, temperature, relative humidity and ambient con-
centration of air pollutants were summarized by descriptive statistics.
The distribution ofmortality and temperaturewere visualized by panels

https://app.cpcbccr.com/ccr


Fig. 1.Map of Varanasi including air quality monitoring station.
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of time series plot. Temperature extremes are mainly defined in arbi-
trary, while most commonly referred as high/-low temperature above
a certain threshold (either physiological or community based) for few
successive days (Robinson, 2001; Guo et al., 2017; Song et al., 2017).
Heat wave was defined as an event during summer with daily mean
temperature remain equal or above the 95th percentile of annual
mean (≥34.5 °C) for at least 3 consecutive days. Cold spell was defined
as an event during winter with daily mean temperatures equal to or
below the 5th percentile of annualmean (≤14.7 °C) for at least 3 consec-
utive days [moving average lag (0–2)]. The distribution of temperature
ranges and number of cold wave and heat wave days were reported by
histogram and line diagram, respectively. Diurnal temperature variabil-
ity (DTV) was derived as the difference between daily maximum and
minimum temperature. To compare the long-term trendof temperature
and DTV, they were smoothed over time by penalized cubic spline and
visualized by smoothed curves.

The effects of dailymean temperature onmortalitywas estimated by
each of the three seasons; summer (AMJ),winter (DJF) and other season
(inclusive of rest months), adjusting for other nonlinear confounders
such as time trend, relative humidity, ambient air pollution and days
of the week. The following semiparametric quasi-Poisson regression
model with season specific regression coefficients of temperature was
used:
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� �� � ¼ α þ βw tempt � I wð Þ
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where, βw, βs & βo are the regression coefficients corresponding to tem-

perature during winter, summer and other season respectively, IðwÞ
t ¼

1; if tth day falls in winter
0; otherwise
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(s) & It
(o.) for summer and

other seasons; fj(xjt) is the jth smoothed function (penalized cubic
smoothing spline) of xjt's-nonlinear confounders (j = 1,2,…,p) where
p stands for number of nonlinear confounders such as time, relative
humidity, PM10, SO2, NO2 and O3 (p = 6); αk is the intercept for kth

day of week (starting from Monday to Saturday, Sunday is in reference

category), IðkÞt ¼ 1; if kth dow
0; otherwise



.

It is important tomention that the association of dailymean temper-
ature during summer is expected to be directly proportional to mortal-
ity, hence positive regression coefficients should be interpreted as risk
and negative as protective. But for winter the association is expected
to be inverse and hence negative regression coefficient should be con-
sidered as risk while positive as protective.

The effects of extreme temperature such as heatwave and coldwave
on daily mortality were estimated using quasi-Poisson semi-parametric
regression model:

Log E mortalityð Þt
� �� � ¼ α þ βhwI
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where, βhw & βcw are the regression coefficients corresponding to heat

wave and cold wave, IðhwÞ
t ¼ 1; if heat wave on tth day

0; otherwise



, similarly,

It
(cw) for coldwave; rest are as before time, dailymean temperature, rel-

ative humidity, PM10, SO2, NO2,O3 and date of the week. The effect of
DTV on mortality was estimated from the Eq. (2) replacing 2nd and
3rd terms by βdv(DV)i.

Further, in order to investigate the effect modification in
temperature-mortality association by individual characteristics, we
fitted above models separately for each individual factor such as age,
gender, and place of death. The age/-gender/-place of death specific re-
gression coefficients were also compared within the group byWald χ2-
test to measure the equality of regression coefficients assuming covari-
ance to be zero (Diggle et al., 1994).
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Additionally, the dose-response curve of mortality and different
temperature metrics adjusting other confounding factors were gener-
ated to observe the changes in mortality caused by the different level
of temperature exposure. The dose response curves were generated by
applying penalized cubic spline function of the temperature metrics in
the Eq. (1) ignoring stratification by season which estimated degrees
of freedom based on Generalized Cross Validation (GCV) score. The es-
timated degrees of freedoms (edf) were embedded into Fig. 8.

Population vulnerability to climate extremes are measured both in
terms of sensitivity and adaptive capability. To analyze individual's
adaptive capability was beyond our scope therefore, we emphasized
on sensitivity analysis. We performed different sensitivity analyses.
First, we stressed on exploring specific temperature metrics which de-
fines mortality better, as may be the case that certain temperature met-
rics may impact strongly on individual. We have carried out the
sensitivity analysis to evaluate how does estimates vary over selection
of different temperature metrics (maximum and minimum tempera-
ture, mean temperature, apparent temperature and diurnal tempera-
ture) within the core model. We then considered the possibility that
mortality not only depends on the current day exposure, but also on
previous days' exposure (time lag effects). We therefore, applied a re-
stricted distributed lag model up to 7 days' lag with polynomial of de-
gree two with Eq. (1) (Schwartz, 2000) and single lag model up to
7 days lag. Further, the nonlinear association of temperature metric
and sensitivity of the choice of degrees of freedom (1 to 3 degrees of
freedom) of temporal effect on mortality at season specific analysis
was also explored.

The data was analysis by statistical software R version 3.5.1 (R Core
Team, 2018); the R -package “mgcv” (version 1.8–18.) (Wood, 2006)
and “dlnm” (version 2.3.2.) (Gasparrini, 2011) were used in subsequent
analysis.

3. Results and discussion

Descriptive statistics of daily all-causemortality, RD and CVD associ-
ated mortality, meteorology and air quality are summarized in Table 1.
Table 1
Summary of the mortality, meteorological conditions and air pollution in Varanasi from 2009 t

Variable No. of observation Mean SD

Daily death counts
All cause mortality 64,712 22.15 6.1
Respiratory disorder (RD) 222 0.3 0
Cardiovascular disorder (CVD) 1996 1.42 0.7

Mortality classified by gender
Male 38,640 13.22 4.3
Female 26,072 8.92 3.5

Mortality classified by age
Age (0–4) 4132 1.37 1.3
Age (5–44) 10,130 3.47 2.0
Age (45–64) 17,709 6.06 2.6
Age (65 and above) 32,741 11.21 4.2

Mortality classified by place of death
Institutional death 44,585 6.9 2.9
Non-institutional death 20,127 15.3 4.9

Meteorological parameters
T.max (°C) 2922 31.56 6.6
T.min (°C) 2922 20.05 7.0
T.mean (°C) 2922 25.81 6.4
RH (%) 2922 63.75 20.1
AT (°C) 2365 28.56 7.4

Air pollution parameters
PM10 (μg/m3) 2181 219.21 135.7
SO2 (μg/m3) 2344 3.93 4.9
NO2 (μg/m3) 2278 20.64 11.8
O3 (μg/m3) 2368 23.03 16.0
Mean (±SD) daily all-causes mortality for 2009–2016 was 22 (±6),
among which 60% were male. Daily mean (±SD) male mortality was
higher (13 ± 4) compared to daily mean (±SD) female mortality (9
± 4). Again, within all-cause mortality, the cases due to RD and CVD
accounted 29%, 65% of which were male referring their added vulnera-
bility to the exposure to outdoor environment. The average lifespan in
Varanasi was computed as 59 years, well below in reference to national
(68.6 years) and global averages (72.0 years,WB, 2018). There was also
a specific seasonal pattern in the daily all-cause mortality, with slightly
excess mortality mainly during winter (28%) compared to summer
(24%) and monsoon (23%). Table 1 also summarizes the ambient air
quality in Varanasi experienced from 2009 to 2016 (all inclusive).
Mean (±SD) PM10 concentration was 219 (±136) μg/m3, with the
yearly annual mean varying from 188 to 320 μg/m3, well exceeding
WorldHealth Organization standard (50 μg/m3) and the Indian national
ambient air quality standard (100 μg/m3). Air quality in terms of PM10

was particularly severe having 87% of the monitoring days (n = 1905)
exhibit non-attainment of the national standard. PM10 concentration
was highest during winter (320 ± 118 μg/m3) and post-monsoon
(267 ± 109 μg/m3) while lowest during rainy monsoon season (115
± 96 μg/m3; Kumar et al., 2017; Singh et al., 2018). In contrast, the
abundance of trace gases was comparatively low and remained mainly
within the standard. Concentration of NO2 and SO2 was lowest during
monsoon (NO2: 13± 6; SO2: 3 ± 2 μg/m3) before rising to its peak dur-
ingwinter (NO2: 30± 11; SO2: 4± 2 μg/m3), while concentration of O3

was highest in pre-monsoon (33 ± 19 μg/m3; Shukla et al., 2017).
Among the seasons, winter was the most polluted season in every as-
pect followed by post-monsoon while monsoon was relatively clean
(Fig. S1).

All-cause mortality time series, four different temperature metrics,
and a time series of the heat and cold event are presented in Fig. 2.
Over the period, the city has experienced on an average 8 episodes of
heat waves in each year (91 total), primarily in May and June, and 8 ep-
isodes of cold waves in each year fromDecember to February (97 total).
The daily mean mortality during temperature extreme days (28) in-
creased by 27% compared to the normal days (22). A clear declining
o 2016.

Median Maximum 25th percentile 75th Percentile

22 78 18 25
0 0.08 0 0
1 5 1 2

13 51 10 16
9 34 6 11

1 8 0 2
3 13 2 5
6 20 4 8

11 46 8 13

7 22 5 9
15 61 12 18

32.4 46.2 27.0 35.8
21.8 39.6 13.8 26.2
27.7 40.6 20.1 30.7
63.0 98.0 44.0 75.0
26.4 47.7 20.5 31.0

208.2 901.6 97.3 317.6
3.1 102.6 2.2 4.4

19.4 132.0 12.2 28.4
18.2 151.1 11.3 31.1



Fig. 2. Distribution of daily (a) maximum, minimum, mean and diurnal temperature, (b) all-cause-mortality, (c) monthly distribution of heat wave and cold spell, (d) Temperature
distribution of 3-day moving average of mean temperature showing different temperature range for heat wave (≥95 percentile) and cold spell (≤5 percentile).
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trend of maximum and mean temperature in all the centiles were also
noted, with an increasing trend of minimum temperature (Fig. S2).
Such an increase in the daily minimum temperature may be crucial as
heat stress related mortality are reported to be higher when nights are
especially warmer (Murage et al., 2017). The variation in the daily
mean temperature from 2009 to 2016 indicates an overall decrease
(0.7 °C, Fig. 3), opposite to the reported increasing trend over India
(0.5 °C; Mazdiyasni et al., 2017). The DTV also reduced sharply until



Fig. 3. Distribution of daily mean temperature and diurnal variability over time.

Table 2
Effects of different metrics of daily temperature on mortality for different seasons.

Temperature
metric

Season % Change in mortality/unit
change in temperature

RR(95% CI)/unit
change in
temperature

Min Winter −1.14(−1.78,−0.5) 0.989
(0.982,0.995)

Summer 4.81(4.03,5.59) 1.049
(1.041,1.057)

Other
Seasons

0.18(−0.23,0.59) 1.002
(0.998,1.006)

Mean Winter −1.53(−2.18,−0.88) 0.985
(0.978,0.991)

Summer 5.61(4.69,6.53) 1.058
(1.048,1.067)

Other
Seasons

0.03(−0.49,0.56) 1(0.995,1.006)

Max Winter −1.03(−1.55,−0.51) 0.99(0.985,0.995)
Summer 2.95(2.18,3.71) 1.03(1.022,1.038)
Other
Seasons

−0.05(−0.66,0.55) 0.999
(0.993,1.006)

AT Winter −1.19(−1.65,−0.73) 0.988
(0.984,0.993)

Summer 1.48(0.97,1.99) 1.015(1.01,1.02)
Other
Seasons

0.14(−0.23,0.51) 1.001
(0.998,1.005)

DTV Winter −0.75(−1.37,−0.13) 0.992
(0.986,0.999)

Summer −1.32(−2.03,−0.61) 0.987(0.98,0.994)
Other
Seasons −0.38(−0.95,0.2)

0.996
(0.991,1.002)

Note. The abbreviations used in the table are: Min = Minimum Temperature; Mean =
Mean Temperature; Max = Maximum Temperature; AT = Apparent Temperature; DTV
= Diurnal Temperature Variability.
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2015 (2.2 °C), with an overall reduction of 0.8 °C between 2009 and
2016. The decrease in DTV was primarily influenced by the decrease
in daytime temperature (−0.012 °C; 0th centile) and the increase in
minimum temperature at higher centiles (0.004 °C; 100th centile).
The DTV centile plot shows a clear declining trend, mostly in the
lower centiles (−0.013 °C; 5th centile; Fig. S2), which is a clear indica-
tion of reduction in the daily difference between maximum and mini-
mum temperature. Overall, decline in the diurnal variability of the
temperature was consistent with the global observations, and has
often been associatedwith increasedmortality and human health prob-
lems (Guo et al., 2014, 2016; Carreras et al., 2015; Yang et al., 2018).

All statistical analysis was made using mean temperature as it was
most strongly associated with excess mortality (Table 2). The details
have been discussed in the sensitivity analysis part. We also stratified
the mortality by age, sex, cause of death and place of death as these
are known to influence the association between temperature and
human health (Carreras et al., 2015). Considering the consistent decline
in DTV over Varanasi, we also examined its effects on mortality.

3.1. Mean temperature and daily mortality

The association between daily mean temperature andmortality var-
ied considerably between the seasons and among various age groups
(Fig. 4). During summer, daily 5.6% all-cause mortality was noted com-
pared to the daily 1.5% all-causemortality duringwinter. Mortality rates
for male were slightly higher in winter (−1.71%, 95% CI: −2.51,
−0.90%) whereas for female they were higher during summer (6.03%,
95% CI: 4.63, 7.43%). We also found evidence that increase in all-cause
mortality was highest for people ≥65 years of age (−2.71% in winter
to 6.83% in summer) and gradually reduced with the decrease in age,
except for 0–4 years. The shift in daily all-cause mortality with age
was identical for both summer and winter months, while the extent of
change in mortality was comparatively higher during summer. Similar
evidences of strong association between daily mean temperature and
mortality were reported in United States and China for summermonths
(Davis et al., 2016; Zhang et al., 2017). In India, Mazdiyasni et al. (2017)
also reported a 146% increase in daily heat-related mortality based on a
single event of 0.5 °C increase in the summer mean temperature. We
also found higher mortality for non-institutional deaths (those dying
outside the hospital) compared to institutional deaths (those dying
within the hospital). In absence of direct observation, place of death
was considered as a proxy to socio-economic condition (Zhang et al.,
2017; Ma et al., 2015). Death outside hospital (Non-Institutional



Fig. 4. Percent change in mortality associated with increase in mean temperature.
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death) possibly reflect inaccessibility to health insurance, health care fa-
cilities and poor housing condition which make population even more
vulnerable, thereby increases the exposure intensity to unusual
Fig. 5. Relative risk of cold spells and heat
temperature. Percent increase in mortality due to non-institutional
deaths were higher in summer (6.10%, 95% CI: 5.31, 7.12%) compared
to winter (2.11%, 95% CI: 2.84, 1.40%).
waves on daily number of mortalities.
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3.2. Temperature extremes and daily mortality

We have assessed the mortality risk in terms of pre-defined cold
waves and heat waves. Fig. 5 shows mortality in Varanasi from 2009
to 2016 stratified by place of death, sex and age. Model results suggest
that temperature extremes amplify the relative risk (RR) of all-cause
mortality in Varanasi for both heat waves (RR 1.13, 95% CI: 1.04–1.22)
and cold spells (RR 1.06, 95% CI: 0.98–1.14). For cold spells, there was
no significant difference in the RR between males and females. How-
ever, for heat waves the RR for males (RR 1.09, 95% CI: 0.99–1.20) was
much smaller than for females (RR 1.22, 95% CI: 1.09–1.37). Interest-
ingly, the highest RR of cold spells was especially noted for the
45–64 years age group (RR 1.17, 95% CI: 1.03–1.33) whereas, for heat
stress the most sensitive age group was b4 years (RR 1.39, 95% CI:
1.16–1.69). There was evidence that relative risks of mortality to heat
wave was more closely associated to population age as both elderlies
(≥65 years) and children (≤4 years) suffers the maximum deaths com-
pared to others. The mortality risk was also higher in non-institutional
deaths and the effect was more prominent during heat wave.

Several studies from Europe, Latin America and China reported in-
creased risks from temperature stress for the elderly and socioeconom-
ically deprived individuals (Chen et al., 2017; Han et al., 2017; Guo et al.,
2017; Åström et al., 2013; Sheridan et al., 2009; Wolf et al., 2014). Chen
et al. (2017) reported a high mortality risk in Texas, USA, ranging be-
tween 0.1 and 5% for 1 °C decrease in temperature below the cold
threshold. Han et al. (2017) reported a similar association for cold (RR
1.08, 95% CI: 1.06–1.11) and heat (RR 1.02, 95% CI: 1.00–1.05) waves
in Jinan, China. A significant increase in heat stress related mortality in
Stockholm, Sweden was also reported what would have occurred with-
out climate change (Åström et al., 2013). Effect of extreme temperature
is also constrained by community level characteristics. Guo et al. (2017)
emphasized that heat wave related mortality is more related to the
community itself, based on its sensitivity and adaptability, resulting in
excess mortality more frequently over the cold regions. Ma et al.
Fig. 6. Percent change in mortality associat
(2015) considering 66 communities across China, reported 5% excess
deaths associated with heat waves that was potentially modified by
age, gender, place of death and education attainment.

We also observed that the associations betweenmortality and ex-
treme temperature are substantially confounded by air pollution.
The estimated effect of extreme temperature on total mortality was
increased during heat wave (3.2%; Age: 0–4 years) and cold wave
(5.5%; Age: 45–64 years) when the model was controlled for air-
borne pollutants (particularly PM10, Table S2). The results are sup-
ported by similar observation from Europe (Fischer et al., 2004;
Stedman, 2004), France (Filleul et al., 2006; Dear et al., 2005;
Benmarhnia et al., 2014), Australia (Buckley et al., 2014) and China
(Yang et al., 2019). Yet, these studies present heterogeneous finding
as aerosol composition varies between geographical regions, and in-
dividual characteristics such as age, gender, socio-economic condi-
tion, alcohol consumption and smoking also alter the relationship
(Bravo et al., 2016).

3.3. Diurnal temperature variation and daily mortality

Diurnal temperature variability (DTV), defined as the difference be-
tween maximum and minimum temperature, decreased sharply in Va-
ranasi until 2015, mainly due to the decrease in daytime temperature
(−0.012; 0th centile; Fig. S2). The importance of declining trend in
lower centiles of DTV can be perceived in a manner that it attributes
to a much less difference between maximum and minimum tempera-
ture. Fig. 6 denotes the change in mortality (%) with respect to unit
change in diurnal temperature. Overall, mortality associated with DTV
was −0.61% (95% CI: −1.01, −0.25%), marginally higher for institu-
tional death (−0.9%, 95% CI: −1.51, −0.22%), and having more detri-
mental effect on males (−0.88%, 95% CI: −1.30, −0.36%) compared to
females (0.23%, 95%CI: −0.82, 0.48%). The association with all-cause
mortality was high (−1.32%, 95% CI: −2.24, −0.44%) until 2015 due
to the change in DTV (till 2015), before being reduced to−0.63% (95%
ed with increase in diurnal variability.
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CI:−1.12,−0.24%) for 2009 to 2016. The largest effect of DTV on mor-
tality (1.20%, 95% CI: −2.05, −0.32%) was noted for people aged
5–44 years while both elderly and infants were found less susceptible
to DTV.

Several multicountry and multicommunity studies reported incre-
mental risk of mortality associated with the change in DTV (Carreras
et al., 2015; Guo et al., 2016; Lee et al., 2018; Yang et al., 2018). The
health implications are mostly reported in terms of obstructive pulmo-
nary diseases (Song et al., 2008), coronary heart diseases (Cao et al.,
2009) or cerebrovascular diseases (Smolensky et al., 2015). Lee et al.
(2018), Murage et al. (2017), Basu and Samet (2002) suggested that
the decreasing temperature variability reduces the possibility of heat re-
lief, particularly at night. Its impact become more stern when the day-
time temperatures also remain very high (Murage et al., 2017; Kovats
and Hajat, 2008). However, in most of the cases health implication
were not isolated in terms of sex or level of education, but by means
of age, except by Yang et al. (2013), Murage et al. (2017) and Yang
et al. (2018). In Guangzhou, China, a 1 °C increase in DTV at lag of
0–4 days was reported to cause 0.47% (95% CI: 0.01%–0.93%) increase
in non-accidental mortality (Yang et al., 2013) whereas in London ele-
vated nighttime temperature contribute to high mortality risk (RR
1.7%, 95% CI: 1.3–2.1), mainly for patients with chronic ischemic disease
and stroke, and for people b65 years (Murage et al., 2017). In amulticity
study in China by Yang et al. (2018), an increase in strokemortality was
reported at 0–10 lag days for each 1 °C increase in DTV for hot (0.12%,
95% CI:−0.26, 0.51%) and cold days (0.67%, 95% CI: 0.26–1.07%). How-
ever, spatial heterogeneity does exist among the cities, and human fac-
tors like alcohol consumption, arbitrary life style and night shifts also
influences the chance of mortality during low DTV.
Fig. 7. Lag patterns for maximum, minimum and mean
3.4. Sensitivity analysis

We have analysed all-cause mortality against different temperature
metrics, adjusting for the time trend, air pollution, relative humidity and
DOW (Table 2). The daily mean temperature was most strongly associ-
ated with excess mortality, both during summer (5.61%; 95% CI:
4.70–6.52%) andwinter (1.50%; 95% CI:−2.23,−0.91%). Sensitivity anal-
ysis bring forth that the effect estimates varied by exposure days and
remained significant at lag 0–7 days for both summer andwinter. For ex-
ample,with increase in cumulative lag exposure, effect estimates formor-
tality has been increased during winter while it has decreased during
summer (Fig. 7). The detailed description has been provided in Table S3
in reference to the mean temperature exposure. The magnitude of mor-
tality risk was highest at lag 0–6 (current day of death) for summer
mean and minimum temperature (cumulative lag days) and summer
maximum temperature. The cumulative lag effect of winter maximum
temperature on mortality peaked at lag 0–2 (RR 0.98; 95% CI: 0.97,
0.99). Effect estimates for minimum temperature during winter peaked
at lag 0–2 (RR 0.97; 95%CI: 0.96, 0.98) and at lag 0–2 days for winter
mean temperature. The lag choices could adequately capture the adverse
effects of high/low temperature on mortality. Similar lag choices of
0–7 days for heat effects on cardiovascular and cerebrovascular diseases
were reported by Murage et al. (2017), while a moving lag average
1–5 dayswere used by Guo et al. (2016) for cold stress. Apart from cumu-
lative lagmodel the single lagmodel were also explored.With increase in
lag days, the single-day lag shows protective effect during summer while
increase in associated risk duringwinter.We observed themaximum risk
at lag 0 for summer (RR 0.997; 95% CI: 0.994, 1.000) while during winter
maximum risk was noted for lag 7 (RR 1.000; 95% CI: 0.995, 1.005).
temperature effect on non-accidental mortality.
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In general, heat related mortality was associated with a shorter lag
(0–3 days), while cold related mortality last longer (0–21 days,
Anderson and Bell, 2009; Conlon et al., 2011). For this study, change of
lag (0–7) did not significantly influence the effect estimates during
summer, while slightly higher estimates were noted during winter
usingmaximum andminimum temperature and slight lower estimates
were recorded for mean temperature. The nonlinear association of tem-
perature metric on mortality at season specific analysis was also ex-
plored but found to be perfectly linear. We also explored the
sensitivity of the choice of degrees of freedom (1 to 3) of temporal effect
on mortality in season specific analysis as noted in Table S3. We didn't
findany noticeable changes in the effects of temperaturemetric onmor-
tality, hence was not reported.

3.5. Exposure-response curve

Fig. 8 indicates the exposure-response curves for different tempera-
ture indices associated mortality with 95% confidence interval. In gen-
eral, a non-linear association between temperature and mortality was
noted with an overall increase in mortality for increasing temperature.
The exposure response curves for themaximum and the apparent tem-
perature were identical, with small mortality risks till 35 °C. However,
the mortality risks increased by 21% for daily maximum temperature
N37 °C. An identical exposure-response curve was also evident for the
daily minimum temperature and the daily mean temperature. Namely,
mortality risk increased for daily minimum temperature N27 °C and for
daily mean temperature N33 °C. This clearly establish the detrimental
Fig. 8. Exposure-response relationship of maximum, mean, minimum
health impact of increase in daily minimum temperature in continua-
tion with increase in daily means, which possibly induce additional
stress to patients with chronic ischemic and stroke, and in younger pop-
ulation (Murage et al., 2017). The early morning hour deaths from
stroke, heart failure and ischemic diseases (Elliott, 1998) is most proba-
bly due to disturbed circadian rhythm, known to regulate physiological
mechanism (Moser et al., 1994). Similar results were also noted for DTV
b7.0 °C, with subsequent decrease in mortality for DTV N15 °C. Due to
limited data in two extremes of the curve, confidence bands b7 °C and
N15 °Cwere found to be quitewide. However, DTV exhibited almost lin-
ear association between 7 °C and 15 °Cwith dailymortality countwhich
was quite robust due to narrow confidence band. A non-linear associa-
tion between DTV and mortality was reported also by Zhang et al.
(2018). However, in contrast to the reports of increase in mortality
with extremely high DTV (Zhang et al., 2018; Ding et al., 2015), we
found elevated level of mortality with decrease in DTV for Varanasi.
Such observation was identical to the published reports over China
(Luo et al., 2013).

Several caveats to this analysis do exist. First, as the study focused on
a single city, the results may vary in other environmental conditions.
Second, the meteorological and air pollution variables were retrieved
from a single available monitoring station, which may lead to some
sort of variations in individual exposure. However, assuming that the
variables would not vary significantly over a small urban geographic
area, the single station would be able to display the uniformity
(Zhang et al., 2017). Due to data constraint, we did not account for the
individual level characteristics e.g. socioeconomic conditions, literacy,
and apparent temperature and diurnal temperature variability.
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smoking/alcohol habits, which may serve as effect modifiers. We tried
to separate cause specific mortality (RD & CVD), but due to low data
count and statistical insignificance, we have avoided reporting case-
specific mortality.

4. Conclusions

Present study estimates the health effects of temperature for the city
of Varanasi and the additional effect on mortality due to temperature
extreme, considering other nonlinear confounding factors e.g. time
trends, relative humidity, air quality and days of the week. The major
findings support the general fact that high temperature extremes have
deleterious impact on human health. In general, daily mean tempera-
ture was more strongly associated with mortality than other tempera-
ture metrics. This key reference will allow us to formulate a model
that provide us the estimates worthy to be considered in mortality
risk assessments and reduce the underestimation. The study is first of
its kind that present the increase in mortality with decrease in DTV.
Our novel application of DTV argue that the attention must be paid to
decrease in DTV in setting up early warning system. It was found that
the percent increase in mortality was high during summer compared
to winter. Similarly, risk ratio was high due to heat wave compared to
cold spell. This brings forth the key point for policy making where
major emphasis needs to bemade in combating the heat relatedmortal-
ity. Interestingly, the negative impact of unusual temperature does not
remain restrict to a specific age group instead different temperature
metrics influence age differently. Like high mean temperature during
summer increased the mortality ≥65 years of age particularly for fe-
males, while heat waves and DTV influenced high mortality for 0–4
and cold wave for 5–44 years' age group, females again beingmore vul-
nerable. This suggests that females were more vulnerable despite the
fact that the totalmortality remainsmuch higher formales. The dose re-
sponse curve explored the nonlinear relation between mortality and
different temperature metrics emphasizing increased mortality above
certain temperature thresholds. In addition, to test the robustness of
the model, sensitivity analysis was performed for temperature-
mortality associations accounting nonlinear and delayed (lag) effects
of temperature. A change in lag did influence the effect estimates during
winter compared to summer. We therefore, conclude with a level of
confidence that potential change in climate will have drastic impact
on human health in the city of Varanasi, which necessitates proper at-
tention both in prioritizing governmental policies and public awareness.
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