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ABSTRACT

Spot blotch (SB) in wheat crop is caused by Bipolaris sorokiniana, become an epidemic in warm and
humid regions. The climate influences the incidence and severity of the crop diseases. The present study
is an attempt to assess the role of climatic parameters on the SB of wheat. The experiment was conducted
on susceptible wheat varieties grown under timely and late sown conditions at Varanasi for three
consecutive years (2014-15, 2015-16, and 2016-17). The Multi Liner Regression (MLR) model revealed
that the R® for disease severity was 0.74 and 0.72, for timely and late sown conditions, respectively. Auto-
regressive Integrated Moving Average (ARIMA) models were evaluated to predict the SB severity. Out of
eight ARIMA models, ARIMA (1, 0, 1) was the best fit to predict the disease severity. The R’and RMSE
were 0.88 and 7.61, respectively for the timely sown condition. For the late sown, R* was 0.86 and RMSE
5.48. It was noted that the disease incidence and severity increased rapidly during 8" to 13" SMW that
follows after the heading. The risk of SB increased after heading in those areas characterized by average
maximum temperature >30 "C with high relative humidity >50%. The outbreaks of SB were recorded
during this period. This study will help wheat growers of the EGP for timely adaptation of management

practices and breeder for the screening of SB resistant germplasms.
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Wheat (7riticum aestivum L.) is an important and widely
grown crop which requires cool and moist weather during the
vegetative phase, and warm and dry weather during
reproductive phase (Dubey et al., 2019). It is sensitive to
weather, mainly temperature which may affect the growth and
yield (Sonkar ef al., 2019; Pathania et al., 2019; Vashisht and
Jalota, 2018). Wheat being the second most important crop of
South Asia, contributes nearly one-third of the total food grain
production (Mall ef al., 2018). The area under wheat has
steadily gone after the green revolution and its production and
productivity have increased tremendously. The wheat area has
increased from 12.83 million hectares in 1966-67 (Pant et al.,
2016) to 29.72 million hectares in 2017-18, with the record
production of 98.61 million tonnes of wheat in 2017-18
(Anonymous, 2018).

Globally, an estimated 25 million hectares of wheat area
is affected by SB and about 40% area falls under Indian
subcontinent (Gupta e al., 2018). Average annual crop losses
are estimated to be 2-3 million tonnes. Several abiotic and
biotic factors affect wheat yield in this region, which is mostly

dominate in warm temperature and high humid at the late post-
anthesis phase of the crop (Chatrath ef al., 2007). Among the
biotic factors, spot blotch caused by Bipolaris sorokiniana has
now emerged as a major threat (Chowdhury et al., 2013). Out
of 10 million hectares of wheat growing area in Indian sub-
continent, 9 million hectares are in the Indo-Gangetic plains
which are highly prone to SB (Mall et al., 2011). Adequate
grain yield decreases due to SB (Sharma et al., 2007) and heat
(Sharma ef al., 2007b) have been reported in South Asia. Both
SB and heat are grievous during post anthesis period causing
pre-mature senescence of leaves, reduced grain filling
duration, and lower kernel weight (Joshi ez al., 2007). Delayed
sown wheat faces terminal heat stress problems as temperature
rises during grain filling (Sharma et al., 2008), conditions that
also increase the severity of SB (Sharma ez al., 2007a).

SB infection is known to be influenced by weather
conditions particularly favourable temperature and relative
humidity during critical growth stage of the crop (Mehta,
1998). Continuous rain for five to six days followed by warmer
temperatures (day average temperature 20 to 30 °C) has been
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reported to be conducive for SB epidemics (Mehta, 1998).
Infection was rapid and more grievous at 28 °C temperature.
(Singh et al., 1997). High humidity for 72 hours (h) was found
to establish infection in adult plants and light infection was
recorded when the temperature was more than 30 °C (Senthil,
2004). Outbreaks of spot blotch in Brazil were often shown to
be associated with periods when the leaves remain wet for >18
h a day and mean air temperature stays at >18 “C (Reis, 1991).
In the Indian subcontinent, the disease spreads when the
temperature stays at >26 °C (Chaurasia et al., 2000), which
explains why late-sown wheat is particularly vulnerable to the
disease (Guptaetal., 2018).

North eastern plain zone (NEPZ) of India is the second
highest wheat producer zone (Mall ez al., 2002; Mall et al.,
2000) which is characterized by high temperature and
humidity at the late 'growth stage' of wheat, which provide the
favorable conditions for SB progression (Pant et al., 2016).
Weather parameters contribute a major role in the
development of different growth stages of crop and infestation
ofpestand diseases (Paul ez al., 2013).

In statistics, dependent variable, influenced by only one
explanatory variable is generally unrealistic and it is often
influenced by more than one independent variables. This
relationship is at the core of the multi linear regression and has
high explanatory power (Kumar ez al., 2019).

There are several studies which have applied model to
estimate the disease severity of SB using the linear regression
method, logistic regression and polynomial regression
method. Auto-regressive integrated moving average model is
one of the most widely used time series model (Han et al.,
2010). ARIMA model has various advantages for the
forecasting compared with other methods, such as a moving
average and exponential smoothing. In the present study,
ARIMA model have been used for the forecasting of SB
severity in wheat.

MATERIALS AND METHODS
Data used

SB susceptible wheat variety HUW 234 was sown at
Agricultural Experimental Farm, BHU, Varanasi, India,
during 2014-15 to 2016-17 seasons, under timely sown and
late sown conditions. Weekly SB data, spinning 1" to 13"
standard meteorological week, related to disease severity were
collected for consecutive three years (2014-15, 2015-16 and
2016-17). In all three seasons, disease management practices
were not applied. The timely sown condition crop was sown at
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25" November and late sown at 25" December. The disease
severity data were collected from 8" to 13" SMW for each year.

The crops were harvested in mid of April of each year.

The meteorological data maximum temperature (Tmax
in °C), minimum temperature (Tmin in °C), rainfall (mm),
relative humidity (RH in %) and dew point (Temperature in
°C) from the year 2015 to 2017 of experimental site (GPS
coordinates 25° 16' 43" N and 82° 59' 25" E) were obtained
from the Indian Meteorological Department (IMD), India. The
analysis was performed for the wheat cropping seasons.

Measurement of disease

SB severity was recorded following double-digit scale
(DD, 00-99) developed for the resistance screening (Saari and
Prescott, 1975). The first digit (D)) indicates the vertical
disease progress in each plant and second (D,) measured
severity, which was based on affected leaf area and disease
severity percentage (Sharma ez al., 2007). Disease severities
for HUW 234 from 8" to 13" SMW in each year were
calculated by using this following formula:

D D
Disease severity (%) = (—;)x( 92)

x100

Infection rate of disease

During the start of infection, disease use to be very low
and change in infection rate is not possible to be measured. In
mathematics dis short hand for a very little quantity. If the total
amount x of disease increases at variable rate with time #, then
dt means a very short interval of time, and dx is the very small
bit that increase in that interval. That can be written as

dx =xrdt (D

During this point, the pathogen can spread practically
unhindered due to susceptible tissue which it can infect. We
can write this equation (Eq.) (Van der Plank, 1963), as

The rate of increase of disease dx /dt is proportional to x.
This increase is logarithmic and build this clear equation is /
written as

o7 - X )

The subscript / denotes logarithmic increase. It is used
only for increase at very small proportions of disease. We shall
interpret this as x <0.05. This limit for logarithmic increase
may appear certain high. But, there is nothing to stop one from
using a lower limit, say x <0.005. The newly infected tissue
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takes a period p to exist infectious. One should therefore write
an equation

d
“E=Rx, ,(1-x) 3)

Here x,and x, ,are x at times 7 and #-p, respectively. At time
tx, is the total proportion of infected tissue and x,, is the
proportion infected a period p earlier, i.e., x,,is the proportion
of'tissue that has reached, stage of being infectious. The period
pisthelatent period.

The rate R is the basic infection rate, if the rewrites
equation with subscripts, one obtains

% =xr;(1—x)

Except at very small values of x, when /-x is so
nearer to 1 that it can be neglected, the increase of disease is no
longer logarithmic, and r is written without a subscript. We call
rthe clear infection rate. Eq. (4) is only a definition. It defines r

as dx/[x(1-x)dt]

To estimate r, and r one estimates the proportion of
disease in the field on two dates. If x,and x,are the proportions
ondates #,and #,, Eq. (2) becomes

_ 1 x2
rl = ta—t log, X (%)
Similarly Eq. (1.4) becomes
1 x,(1—x,)
r= lo

=t “x1(1-x3)
More comfortably we use log [x/(1-x)] and rewrite these
equations as:

r=—(o ge1 ~log, = =) (6)
and
r= b1 (l 0810 _ l0g101 ;) @)

Stepwise multtple linear regression model

Stepwise multiple linear regressions was used according
to Draper and Smith (1966) to determine the weather factors
accounting for majority of entire variability in disease severity.
Stepwise backward elimination method initiates with the
present of perpetual model b, with a model that comprise all of
the available predictor variables, namely

Yd =b0+b1X1+b2X2+"‘ ...... +kak

Which proceed by gradually eliminating one variable ata
time from the model, such that in each step, the variable
removed was the variable contributing the least to the
prediction of Y at that step. Stepwise forward selection method
start with the easiest function, namely, b, and successively one
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Fig. 1: Flow chart of Box-Jenkins methodology for time series
ARIMA model

variable were being added at a time to the model in such a way
that at each step a variable is added. At each step of the
procedure, a present model was chosen a predictor variable
that was included in the current model as the best candidate
variable for adding to that model depending on whichever
model selection criterion like R’, C,,adj R’, C etc.

Auto-regressive Integrated Moving Average (ARIMA) model

In ARIMA models a non-stationary time series is made
stationary by applying limited differencing of the data points.
The standard statistical methodology to establish an ARIMA
model includes three steps: identification, parameter
estimation and diagnostic checking (Wang ef al., 2017). The
model described in auto-regressive, integrated, moving
average, called an ARIMA (p, d, ¢) model. The auto-regressive
element, p, represents the lingering effects of preceding
scores. The integrated element, d, represents trends in the data,
and the moving average element, g, represents the lingering
effects of preceding random shocks. ARIMA models can be
estimated following the Box-Jenkins (Box and Jenkins, 1970)
approach (Fig.1).

Accuracy measurement of the model

In the present study, the following statistics were used to
test the forecasting model: the coefficient of determination
between the observed value and predicted value (R), root
mean square error (RMSE) and mean absolute error (MAE):

RMSE =
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Table 1: Disease infection growth rate (per day) of spot blotch
of wheat for the susceptible genotype at timely and late sown
conditions

Week No.  Average disease infection growth rate
Timely sown Late sown
8 0.088 0.056
9 0.072 0.042
10 0.082 0.042
11 0.51 0.013
12 0.023 0.013
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from 0.023 to 0.088 and 0.013 to 0.056 per day between 8" to
12" SMW at timely sown and late sown conditions,
respectively. The growth rates were higher at the disease
initiation weeks and slow after end weeks of infection (Table
1). The SB severity and infection rate increases when the hosts
are more susceptible and aggressive pathogen under the
favorable weather conditions. Every factor those influence the
rate of increase of disease also affects the logarithmic and the
apparent infection rates.

Multiple liner regression analysis

Multiple regression analysis used to characterize the
variation in the dependent variable around the regression

Table 2: Stepwise multiple regression and subsets regression for disease severity versus temperature maximum (tmax in °C),
temperature minimum (Tmin °C), rainfall (Rain in mm), relative humidity (RH %), and dew point temperature (DPT °C) of grown at

timely and late sown conditions

SL Stepwise multiple Variables in significant* (Pr > F) R-  Mean square error
No Regression square (MSE)
Intercept  Tmax Tmin Rain RH DPT
1 Timely sown 08211 0.8180 08106 0.7936 0.8251 0.8183  0.7481 105.57
2 <0.0001 0.0009 <0.0001 0.7625 - 0.0045  0.7478 108.37
3 <0.0001 0.0002 <0.0001 - - 0.0021 0.7471 105.56
4 Late sown 0.8989 09008 09109 0.8530 0.8950 09017 0.7289 54.98
5 0.0001 0.0068 - 0.8626 <0.0001 0.0008 0.7288 5338
6 <0.0001 0.0032 - - <0.0001 0.0001  0.7285 51.90

* All variables left in the model are significant at the 0.01 level

Where, RMSE is the root mean square error between the
observed value and predicted value; O, is the observed value;
P isthe predicted value; N is the number of samples.

Statistical analysis

SAS software (SAS Institute Inc., Cary, NC, 2010) was
used for data analysis in Proc REG model. In this model, a p-
value <0.01 was considered statistically significant. SPSS
statistical software (SPSS Inc., Chicago, IL, USA) were used
for data analysis and to create the ARIMA model and make
prediction. A p-value <0.05 was considered statistically
significant.

RESULTS AND DISCUSSION
Disease infection growth rate

The disease infection average growth rates (r) ranged

function and also used to understand which among the
independent variables are related to the dependent variable,
and helps to be exploring these relationships. Multiple
regressions were performed to test the combinations of factors
that might result in a significantly better explanation of the
variation observed in the field. MLR and partial coefficient of
determination (R’) were estimated for each disease resistant
component (Snedecor and Cochran, 1989) in order to evaluate
the relative contribution and to develop prediction model for
the disease severity. The variables in timely sown (Tmax,
Tmin and Dewpoint) and late sown condition (Tmax, RH, and
Dewpoint) show its response on the disease severity (Fig. 2
and 3). The optimal number of variables used by stepwise
regression procedure was 5, for the best prediction for SB of
wheat. Different combinations among significance
components which produced best fit linear model and
explained the variation were 2 to 5 which contributed
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Table 3: Goodness of fit statistics for plausible autoregressive
integrated moving average (ARIMA) models for the
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Table 4: Goodness of fit statistics for plausible autoregressive
integrated moving average (ARIMA) models for the

prediction of spot blotch of wheat on timely sown

prediction of spot blotch of wheat on late sown

SI. No. Statistic RMSE MAE BIC R-square SI. No. Statistic RMSE MAE BIC R-square
1 ARIMA (1,0,0) 8005 5877 4818  0.860 ! ARIMA (1,0,0)  5.669 4216 4.127  0.846
2 ARIMA(1,0,1) 7617 5510 4812 0877 2 ARIMA (1,0,1) 5486 3937 4156 0861
3 ARIMA(L,1,0) 12455 7670 5714  0.666 3 ARIMA (1,1,0) 10.147 5960 5304  0.519
4 ARIMA(O.1.1) 12508 7273 5723 0.664 4 ARIMA (0,1,1) 10.102 6.182 5295  0.523
5 ARIMA(L11) 12658 7659 5842 0667 5 ARIMA (1,1,1) 10169 5640 5405 0532
6 ARIMA(0,0,1) 7973 5930 4810 0861 6 ARIMA (0,0,1) 5607 4091 4.106  0.850
7 ARIMA(0,L0) 12635 6753 5647  0.646 7 ARIMA (0,1,0) 10060 5440 5192 0512
8 ARIMA (0,0,0) 10.567 7.801 5279  0.748 8 ARIMA (0,0,0) 7416 5.508 4.571 0.729

RMSE= Root mean square error, MAE= Mean absolute error,
BIC=Bayesian information criterion.

RMSE= Root mean square error, MAE= Mean absolute error,
BIC=Bayesian information criterion.
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Fig. 2: Stepwise multiple regression backward elimination (a, b, ¢) of spot blotch of wheat grown at timely sown condition

approximately 75% (R*0.7478 t0 0.7471 and 0.7288 to 0.7285
for the timely and late sown conditions, respectively) in the
backward elimination regression (Table 2).

Autoregressive integrated moving average

The ARIMA (1, 0, 1) model developed in this study
provide a simple tool to predict the disease severity based on
the observed severity over the years. Out of various ARIMA
models with different value of p, d and q, ARIMA (1, 0, 1)
model were the best-fit. The Ljung-Box statistical test did not
reject the null hypothesis of independence in the residuals time
series (Q= 23.039, p=0.113) and (Q= 31.521, p= 0.012) at

timely and late sown conditions, respectively. Thus, the
residual errors were considered to be white noise sequence and
the selected models were confirmed to be appropriate. The
coefficient of determination (R?) of disease severity was 0.87
(with RMSE value 7.61) and 0.86 (with RMSE value 5.48) at
timely and late sown conditions, respectively (Table 3 and 4).
The actual data agreed with the predicted data from ARIMA
model, which can provide better results for the forecasting of
SB. However, the ARIMA model is generally used for short-
term forecasts because the relative bias of prediction increases
with time, resulting in poor long-term prediction.
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Fig. 3: Stepwise multiple regression backward elimination (a,
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Fig. 4: Weekly average maximum temperature (TMAX in °C),
weekly average minimum temperature (TMIN in °C), weekly
average relative humidity (RH in %) on X-axis and weekly
average spot blotch disease severity percent in observed
(OBS) and predicted (PRED) on Y-axis at timely sown
condition (TS) and late sown condition (LS) wheat crop for
2014-15t02016-17

Weather parameters response on spot blotch severity

The time series data, during the crop season 2014-15 to
2016-17, of weekly average weather parameters and disease
severity in mean observed (OBS) and mean predicted (PRED)
at timely sown (TS) and late sown (LS) conditions was shown
in Fig. 4. It was noted that the disease incidence and severity
was comparatively higher in weekly average maximum
temperature (ranged in 31.78-35.42 °C), while relative
humidity (44.07-75.50%) showed decreasing trends during 8"
to 13" SMW. The prediction model performance of disease
severity was evaluated by Taylor Diagrams (Taylor, 2001)
shown in Fig. 5. The disease severity predicts a significant
correlation (r) with observed 0.81 and 0.82 at 95% confidence
level for the timely sown and late sown conditions,

Cerered P O Crvirrrd AWE Ditlerracn

Fig. 5: Taylor diagram of disease severity of spot blotch of
wheat grown at timely sown condition (a) and late sown
condition (b) for 2014-15 to 2016-17. The green box
represents observed disease severity data, and red dot
represents the ARIMA (1, 0, 1) model predicted data

respectively. The results show that the risk of SB increases
when the maximum temperature >30 °C during heading, with
high relative humidity (>50%), which are favorable conditions
for the outbreak of SB epidemic in wheat crop.

CONCLUSION

The overall findings of the present study show
significance influence of the disease incidence and severity
percent increase mostly found during the 8"to 13"SMW. The
average maximum temperature show increase and relative
humidity percent show decrease at same duration. The study
suggests that change in climate causes increase in the disease
incidence and severity which in turn affect the growth and
development of the wheat crop. The disease management
strategies according to the changing climatic conditions with
amalgamation of new strategies will be useful for the
sustainable food production.
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