
Subscriber access provided by BANARAS HINDU UNIV

is published by the American Chemical Society. 1155 Sixteenth Street N.W.,
Washington, DC 20036
Published by American Chemical Society. Copyright © American Chemical Society.
However, no copyright claim is made to original U.S. Government works, or works
produced by employees of any Commonwealth realm Crown government in the course
of their duties.

Anthropogenic Impacts on the Atmosphere

Estimation of high-resolution PM2.5 over Indo-Gangetic Plain
by fusion of satellite data, meteorology, and land use variables

Alaa Mhawish, Tirthankar Banerjee, Meytar Sorek-Hamer, Muhammad
Bilal, Alexei Lyapustin, Robert B. Chatfield, and David Broday

Environ. Sci. Technol., Just Accepted Manuscript • DOI: 10.1021/acs.est.0c01769 • Publication Date (Web): 03 Jun 2020

Downloaded from pubs.acs.org on June 5, 2020

Just Accepted

“Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted
online prior to technical editing, formatting for publication and author proofing. The American Chemical
Society provides “Just Accepted” as a service to the research community to expedite the dissemination
of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in
full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully
peer reviewed, but should not be considered the official version of record. They are citable by the
Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore,
the “Just Accepted” Web site may not include all articles that will be published in the journal. After
a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web
site and published as an ASAP article. Note that technical editing may introduce minor changes
to the manuscript text and/or graphics which could affect content, and all legal disclaimers and
ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or
consequences arising from the use of information contained in these “Just Accepted” manuscripts.



1

1 Estimation of high-resolution PM2.5 over Indo-Gangetic Plain by fusion of satellite 
2 data, meteorology, and land use variables

3 Alaa Mhawish1,2,3, Tirthankar Banerjee3,4*, Meytar Sorek-Hamer1,2, Muhammad Bilal5, Alexei I. Lyapustin6, 
4 Robert Chatfield2, David M Broday7

5 1 Universities Space Research Association (USRA), CA, USA 
6 2 NASA Ames Research Center, Moffett Field, CA, USA
7 3Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, India
8 4DST-Mahamana Centre of Excellence in Climate Change Research, Banaras Hindu University, Varanasi, India
9 5School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing, China

10 6NASA Goddard Space Flight Center, Greenbelt, MD, USA
11 7Civil and Environmental Engineering, Technion, Haifa, Israel12
13 *Correspondence to: T. Banerjee (tb.iesd@bhu.ac.in; tirthankaronline@gmail.com)
14

15

16

17

18 Key points:

19 1. High-resolution MAIAC AOD-based PM2.5 was estimated over the Indo-Gangetic Plain; fusing satellite 
20 data, land-use variables & meteorology.

21 2. Random forest based AOD-PM model estimates were able to capture and quantify the PM2.5 variability 
22 at a sub-urban scale.

23 3. Comparatively high PM2.5 concentrations were evident over central and lower IGP, mediated by land-
24 use and local meteorology.

25
26

27

28

29

30

31

32

Page 1 of 24

ACS Paragon Plus Environment

Environmental Science & Technology



2

33 ABSTRACT

34 Very high spatially resolved satellite-derived ground-level PM2.5 concentrations have multiple potential 

35 applications especially in air quality modelling, epidemiological and climatological research. Satellite-

36 derived aerosol optical epth (AOD), and columnar water vapor (CWV), meteorological parameters, and 

37 land use data were used as variables within a linear mixed effect model (LME) and a random forest (RF) 

38 model, to predict daily ground-level concentrations of PM2.5 at 1km×1km grid across the Indo-Gangetic 

39 Plain (IGP) in South Asia. The RF model exhibited superior performance and higher accuracy than the LME 

40 model, with higher cross-validated explained variance (R2=0.87) and lower relative prediction error 

41 (RPE=24.5%). The RF model revealed improved performance metrics for increasing averaging periods, 

42 from daily to weekly, monthly, seasonal, and annual means, which supports using it to estimate PM2.5 

43 exposure metrics across the IGP at varying temporal scales (i.e. both short and long terms). The RF-based 

44 PM2.5 estimates show high PM2.5 levels over the middle and lower IGP, with the annual mean exceeding 

45 110μg/m3. Seasonally, winter was the most polluted season while monsoon was the cleanest. Spatially, 

46 the middle and lower IGP showed poorer air quality compared to the upper IGP. In winter, the middle and 

47 lower IGP experience very poor air quality, with mean PM2.5 concentrations >170μg/m3. 

48 Keywords: Aerosols; Machine Learning; Random Forest; Mixed effect model; MAIAC; IGP.

49 1. Introduction

50 Airborne fine particulate matter with an aerodynamic diameter less than 2.5 μm (PM2.5) have been 

51 associated with many adverse health effects, especially with cardiovascular and respiratory diseases1. 

52 Numerous epidemiological studies associate exposure to PM2.5 with different health outcomes2–7. 

53 Recently, the World Health Organization estimated around 4.2 million deaths were attributable, globally, 

54 to air pollution8. However, most of the epidemiological studies have been conducted in major urban areas, 

55 where air quality monitoring is denser, rather than in small cities and rural areas. In South Asia, the air 

56 quality monitoring stations are sparsely distributed and are found mainly in major cities, such as in Delhi, 

57 Mumbai, Dhaka, and in state capitals. In the suburban and rural areas where a major fraction of the 

58 population resides, and the PM2.5 levels are as high as in urban areas9–10; there are only a few air quality 

59 monitoring stations, and in some regions, there are none at all. Health risk assessments of PM2.5 exposure 

60 across highly populated and polluted areas of the Indo-Gangetic Plain (IGP) are severely constrained by 

61 the sparse air quality monitoring stations and limited availability of particulate measurement data11. 
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62 Understating the PM2.5 spatial and temporal distribution therefore, is essential to improve understanding 

63 of its impact on human health and regional climate.

64 Satellite remote sensing has the capability to provide high spatially resolved aerosol optical depth 

65 measurements with daily global coverage, which can be used to predict ground-level particulate 

66 concentration12,13. The aerosol optical depth (AOD) is a measure of the extinction of solar radiation by 

67 aerosols in the atmospheric column, from the earth's surface to the top of the atmosphere. In contrast, 

68 PM2.5 is the mass concentration of fine particulate matter measured near the surface. Since both measures 

69 (i.e. AOD, PM2.5) are affected by the amount of suspended particles in the air, it is commonly assumed 

70 that a correlation between AOD and PM2.5 can be established and that AOD can be used to predict ground-

71 level PM2.5 concentrations after accounting for factors that may interfere with the relationship, e.g. time-

72 varying parameters (RH, temperature, wind speed, etc.). Satellite-retrieved AOD has been widely used to 

73 predict ground-level PM2.5 concentrations, especially over the areas where ground monitoring stations 

74 are not available. For example, in the last decade, satellite-retrieved AOD from different satellite-borne 

75 sensors has been used for predicting ground-level PM2.5 at varying spatial resolutions, including 

76 instruments onboard Low Earth Orbit (LEO) satellites, such as Moderate Resolution Imaging 

77 Spectroradiometer (MODIS)14–19, Multiangle Imaging SpectroRadiometer (MISR)9,20–22, and Visible Infrared 

78 Imaging Radiometer Suite (VIIRS)23–25, as well as instruments having a Geostationary Earth Orbit (GEO; 

79 with only local coverage) satellites such as Himawari26,27, and GOES28,29. In parallel, a new operational 

80 MODIS aerosol retrieval algorithm named MultiAngle Implementation of Atmospheric Correction (MAIAC) 

81 has been gaining attention as it provides AOD retrievals at very high spatial resolution (1km grid) with 

82 global coverage and with each instrument possessing a daily revisit period. MAIAC AOD retrievals have 

83 high capability in identifying fine aerosols, emission sources, and aerosol hotspots30–32. Hence, it has been 

84 widely studied and found to be a powerful predictor of ground-level PM2.5 concentrations compared to 

85 other AOD products with coarser resolution33–40. However, several factors such as meteorology and 

86 aerosol types can influence the relationship between AOD and PM2.5
41. Several studies suggested 

87 considering other influential factors (such as meteorological variables, land use parameters, and aerosol 

88 types) in the AOD-PM modeling to improve the PM2.5 prediction using AOD measurements42 35,39. 

89 Various statistical models have been explored to establish the relation between satellite-retrieved 

90 AOD and ground-level PM2.5, extending from simple multivariate regression models13 to more advanced 

91 statistical models such as linear mixed effect models14,15,37,43–45, geographically weighted regression 

92 models46–48, generalized additive models22,49, and other nonlinear models49–51. Moreover, some studies 
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93 used multiple-stage models to address the spatiotemporal variations in the AOD-PM2.5 relationship for 

94 more accurate PM2.5 predictions34,39,52.

95 Recently, machine learning algorithms have been also applied to predict ground-level PM2.5 

96 concentrations27,53–55. Unlike traditional statistical models, machine learning algorithms have the ability to 

97 use a large number of predictors with a few prior assumptions, thus enhancing their predictive power and 

98 enabling to capture the complexity in the AOD-PM2.5 relationships56. Ensemble models such as Random 

99 Forest (RF) and the Gradient Boosting (GB) models combine weak learners (multiple models) to obtain 

100 more accurate and robust models57. RF models have been successfully used to predict PM2.5 over several 

101 regions, such as in China53, USA55 and Italy40. In India, very few studies have been conducted to predict 

102 ground-level PM2.5 concentration using satellite AOD data. For example, Dey et al.9 and Chowdhury et al.58 

103 have been used AOD data obtained from MISR and MAIAC AOD respectively, to predict PM2.5 

104 concentration by multiplying the AOD with conversion factor obtained from GEOS-Chem chemical 

105 transport model. Recently, Mandal et al.59 implemented multiple-stage modeling including statistical 

106 model and machine learning algorithm to predict PM2.5 in the national capital of India using satellite data, 

107 and land use, meteorological data, and population. However, to the best of our knowledge, no study that 

108 reports PM2.5 prediction has been conducted across South Asia using an advanced statistical or machine 

109 learning model for PM2.5 prediction on a regional scale.

110 In this study, both a statistical model (LME) and a machine learning algorithm (RF) were used to 

111 predict, for the first time, high spatially resolved (1 km) ground-level PM2.5 concentrations over the IGP 

112 region, India; with the MAIAC AOD as an independent variable. The main objective of this study was to 

113 examine how accurate can a machine learning model that uses the above satellite-based AOD product be 

114 for estimating ground-level PM2.5 concentrations. In response to this task, we first, compared the 

115 performance of the RF model against that of an LME model, and the more accurate model was used for 

116 PM2.5 prediction. Next, we have studied the spatiotemporal variation of the estimated PM2.5 across the 

117 IGP region and identified regional hotspots. The dataset and model details used are described in section 

118 2, the results are presented in section 3, and followed by a discussion in section 4.

119 2. Data and Method

120 2.1 Study region
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121

122 Figure 1: Map of the study region and the spatial distribution of PM2.5 monitoring stations. The colors 

123 represent the number of PM2.5 and independent variables collocations. The shaded area represents the 

124 IGP. The area within the box represents the monitoring stations in Delhi.

125 The study area covers the IGP, which stretches west from Pakistan across Northern India to the east 

126 of the Bay of Bengal and Bangladesh (Fig. 1). The IGP region is densely populated and accommodates 

127 nearly 13% (>800 million) of the world population. The rapid economic and population growth across the 

128 region is associated with a wide range of anthropogenic activities, including biomass/-waste burning, 

129 industries, and vehicular emissions, resulting in significant particulate matter pollution across the region. 

130 The region is considered to be one of the aerosol hotspots and is characterized by a persistent high aerosol 

131 loading throughout the year60–62.

132 2.2 Ground-based PM2.5 Measurements

133 Daily mean PM2.5 concentrations were obtained from a total of 64 air quality monitoring stations 

134 across the IGP from July 1st, 2018, to June 30th, 2019. Specifically, PM2.5 data were obtained from 61 

135 monitoring stations of the Central Pollution Control Board (CPCB) (https://app.cpcbccr.com/ccr/#/caaqm-

136 dashboard-all/caaqm-landing) and 3 PM2.5 monitoring stations operated by the US Consulate in Delhi, 

137 Kolkata, and Dhaka. The spatial distribution of the air quality monitoring stations across the region is 
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138 sparse and varying. For example, almost 50% of the monitoring stations are located in New Delhi, with 

139 the rest distributed across the major cities. None of the air quality monitoring stations were in rural areas.

140 Measurement of PM2.5 concentrations at all the monitoring stations is done with beta gauge 

141 attenuation monitors (BAM-1020; Met One Instruments) that report hourly mean PM2.5 concentrations. 

142 We calculated the daily mean PM2.5 concentrations after applying strict quality control procedures to 

143 remove abnormal observation. Only days with more than 14 hourly measurements (60%) were used in 

144 the analysis. The geographical location of the monitoring stations and the data availability of the valid 

145 MAIAC AOD and PM2.5 collocations are shown in Figure 1.

146 2.3 MODIS MAIAC Products

147 MAIAC is a relatively new operational MODIS-based aerosol retrieval algorithm that retrieves aerosol 

148 properties and columnar water vapor at 1 km spatial resolution over land surface except for snow and 

149 ice32. The MAIAC aerosol products have higher spatial resolution compared to other operational MODIS 

150 aerosol products based on the Dark Target63 (DT) and the Deep Blue64 (DB) algorithms. Several validation 

151 studies showed that the MAIAC algorithm improves aerosol retrieval accuracy, especially over bright 

152 surfaces such as urban areas and dry land30,32. Several reasons make MAIAC significantly superior over 

153 other operational MODIS algorithms: (a) the high spatial resolution (1km) compared to DT and DB (10km 

154 and 3km) that allows to distinguish fine spatial features and to enhance spatial coverage30, (b) high 

155 retrieval accuracy over both dark and bright surfaces30, and (c) MAIAC’S capability to retrieve AOD for 

156 different aerosol types while discriminating among absorbing fine (smoke) and coarse (dust) aerosols32.

157 In this study, the combined Terra and Aqua MAIAC product (MCD19A2; 

158 https://ladsweb.modaps.eosdis.nasa.gov/) was used to extract Terra and Aqua AOD at 550nm with an 

159 aerosol type (compositional) label (dust, smoke, and background), and CWV. Only the highest quality data, 

160 designated with the Quality Assurance (QA) cloud mask value “clear”, were used.

161 The spatial coverage of Terra (~10:30 am overpass time) and Aqua (~01:30 pm overpass time) MAIAC 

162 AOD varies due to the diurnal cycle of cloud cover30, meteorological conditions (mainly the lower 

163 atmospheric boundary layer65) and the daily varying anthropogenic activities66. Therefore, a combined 

164 MAIAC AOD product from both Terra and Aqua, can enhance the spatial and temporal coverage and 

165 provide a more representative AOD that accounts for both the morning (Terra) and afternoon (Aqua) time 

166 windows, from ~10:00 am until 02:00 pm local time. Nevertheless, if one of the two values (Aqua or Terra 

167 AOD) is missing the combined AOD product will be biased towards either the morning or the afternoon 
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168 retrieval. To eliminate this bias, missing Terra AOD were predicted from Aqua AOD, and vice versa, by 

169 fitting seasonal linear regression models to both the Aqua and Terra AOD. Table S1 shows the seasonal 

170 regression equations and correlation coefficients of each season for both the AOD and CWV. The number 

171 of the available combined AOD product increased by 22% and 24% compared to Terra or Aqua only AOD 

172 retrievals, respectively. The R2 of the seasonal regressions between Aqua and Terra MAIAC AOD ranged 

173 from 0.63-0.79 (p < 0.001).

174 2.4 Meteorological data

175 Meteorological variables, including the ambient temperature at 2 m a.g.l. (temp; K), surface pressure 

176 (SF; hPa), wind field at 10 m a.g.l. (Wind Speed (WS); m s-1, and Wind Direction (WD); o), relative humidity 

177 (RH; %), and the planetary boundary layer height (PBLH; m), were obtained from the European Center for 

178 Medium-Range Forecast (ECMWF) atmospheric reanalysis ERA-Interim products 

179 (https://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/). The spatial resolution of ERA-

180 Interim is 12.5km, and its temporal resolution is 6h except for the PBLH that is provided in every 3h. All 

181 the meteorological variables were averaged over the time window corresponding to the Terra and Aqua 

182 overpass times.

183 2.5 Auxiliary data 

184 Level 3 Terra and Aqua MODIS 16-day composite Normalized Difference Vegetation Index (NDVI) data 

185 (MxD13A2, x is O or Y for Terra and Aqua, respectively) at 1km spatial resolution were used in this study 

186 as a proxy for the land use parameter. The NDVI data are reported every 16 days for both Terra and Aqua 

187 but with 8 days of difference between them (Terra reports on day 001 while Aqua reports on day 009). 

188 This corresponds to having a measurement in every 8 days. Elevation (Elev) data were obtained from the 

189 Shuttle Radar Topography Mission (SRTM) database (http://srtm.csi.cgiar.org/srtmdata/) at 30m spatial 

190 resolution67 and used as spatial predictors.

191 2.6 Data processing and integration

192 For predicting PM2.5 concentration at 1km spatial resolution using MAIAC AOD and other temporal 

193 and spatial predictors, the spatial resolution of all the predictors should be consistent and matched with 

194 the MAIAC AOD grid. Therefore, all the meteorological data and auxiliary data were re-projected and 

195 gridded to match the MAIAC AOD fixed grid. In particular, the Terra and Aqua MODIS NDVI were gridded 

196 to a 1km, and then the combined Terra and Aqua daily NDVI was calculated using the temporally 

197 interpolated spline function technique. The meteorological data were gridded to a 1km grid using bi-linear 
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198 interpolation and temporal subsets that matched the Terra and Aqua overpass times (~10 am–2 pm local 

199 time). Similarly, elevation data were also gridded to 1km. The total number of spatial and temporal PM2.5, 

200 satellite- and meteorological data was 8233 matched up collocations, distributed over 356 days from July 

201 1st, 2018 to June 30th, 2019.

202 2.7 Model Development

203 2.7.1 Linear Mixed Effect (LME) Model

204 Linear mixed effect (LME) models have been widely used to estimate PM2.5 concentrations based 

205 on satellite-derived AOD68 since it controls for the inherent day-to-day variability in the relationship 

206 between AOD and PM2.5. The AOD-PM2.5 relationship is expected to be influenced by time-varying 

207 parameters such as RH, PBLH, Temp, and the optical properties of the particles and their vertical 

208 distribution41. Therefore, considering the daily variability in the AOD-PM2.5 relationship is essential to 

209 improve the correlation between the AOD and PM2.5. Hence, allowing for a day-specific random slope and 

210 intercept enables to examine the day-to-day variability in the AOD- PM2.5 relationship.

211 In this study, we developed a nested day- and month-specific random effect based on all the days 

212 with valid AOD-PM2.5 collocations (the days with less than three collocations were removed from the 

213 dataset). The LME model structure is expressed by the following equation (Eq. 1):

214 𝑃𝑀𝑖𝑗 = (𝛼0 + (𝛼𝑑𝑎𝑦 + 𝛼𝑚𝑜𝑛𝑡ℎ)) + (𝛽0 + (𝛽𝑑𝑎𝑦 + 𝛽𝑚𝑜𝑛𝑡ℎ)) × 𝐴𝑂𝐷𝑖𝑗 + 𝛽1 𝐶𝑊𝑉𝑖𝑗 + 𝛽2 𝑊𝑆𝑖𝑗
215  + 𝛽3 𝑅𝐻𝑖𝑗 + 𝛽4 𝑃𝐵𝐿𝐻𝑖𝑗 + 𝛽5 𝑆𝑃𝑖𝑗 + 𝛽6 𝑊𝐷𝑖𝑗 + 𝛽7 𝑁𝐷𝑉𝐼𝑖𝑗 + 𝛽8 𝑇𝑒𝑚𝑝𝑖𝑗 + 𝛽9 𝐸𝑙𝑒𝑣𝑖𝑗 + 𝜀𝑖𝑗

216 Eq. (1)

217 where PMij and AODij are the PM2.5 concentration and MAIAC AOD at monitoring site i on day j;  and  𝛼0 𝛽0

218 are the fixed intercept and slope, respectively;   , ,  and  are the day- and month-𝛼𝑑𝑎𝑦 𝛼𝑀𝑜𝑛𝑡ℎ 𝛽𝑑𝑎𝑦 𝛽𝑚𝑜𝑛𝑡ℎ

219 specific random intercept and slope, respectively; CWV, WS, WD, RH, PBLH, SP, NDVI, Temp, and Elev are 

220 the corresponding auxiliary variables at grid i and day j (and their corresponding fixed slopes); and  is 𝜀𝑖𝑗

221 the error term at site i and on day j.

222 The day- and month-specific intercepts and slopes allow the model to control day-to-day and 

223 monthly variability in the relationship between PM2.5 and AOD. Spatial predictors such as NDVI, and 

224 Elevation were found to be significantly correlated with the PM2.5 and, therefore, were included in the 

225 model. All the variables were tested and only the significant ones were used during the model fitting.

226 2.7.2 Random Forest (RF) model
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227 Random forest is an ensemble learning (algorithm) that aggregates a large number of decision trees 

228 which were created independently using the bootstrap resampling method69. The bagging (bootstrap 

229 aggregation) technique allows to reduce the variance of the estimated prediction by averaging the 

230 regression results from all decision trees. Each node of the tree splits into two daughter nodes using the 

231 best split from the randomly selected variables69. Aggregating weak learners into a strong learner leads 

232 to a final model of enhanced performance. Moreover, the random forest model provides an estimate for 

233 the importance of each variable by measuring the increase in the prediction error (decrease in the 

234 accuracy score) of the final model after performing variable permutations. Here, the mean decrease 

235 accuracy is calculated by the permutation scheme of Breiman70. In the random forest algorithm, the main 

236 two variables that have the major effect at each level (bifurcation) on the model accuracy are mostly the 

237 ones used to split the residual subset at each node (mtry) and to select the number of trees in the forest 

238 (ntree). In this experiment, we found that the best model accuracy was obtained for mtry=12 and 

239 ntree=1500. The unscaled variables importance71 of the final model is reported in Table S2.

240 2.8 Evaluation of Models

241 To evaluate the performance of the developed models across the IGP, we adopted two 10-fold cross-

242 validations (CV) approaches a site-based CV, and a sample-based CV. The 10-fold CV method72 randomly 

243 split the database into ten subsets, each containing 10% of the data. In each round, the model trains on 

244 nine subsets (90% of the data) and predicts the 10th subset, with the predictions evaluated against the 

245 true data. The process is repeated ten times thus ensuring that every subset has been evaluated. In the 

246 site-based CV, the database is split according to the monitoring sites into ten subsets, each containing 

247 ~10% of the data. As such, each subset contains different monitoring stations. In each round, one subset 

248 is held-out and PM levels at the sites it contains are predicted using the model that has been developed 

249 based on data from the other sites. The model is evaluated by comparing its predictions in the held-out 

250 sites against the true observations (which have not been used for the model development). This process 

251 is repeated with each subset held-out in turn. The site-based CV is used for assessing how well the model 

252 performs over regions that do not have monitoring sites, such that the prediction must be done by 

253 applying a model that has been developed (and evaluated) over another region. In the sample-based CV, 

254 the same procedure is performed using the whole database without accounting for the monitoring site it 

255 comes from. As such, the sample-based CV is used for a general assessment of the model performance 

256 for filling data gaps in both space and time in regions were monitoring sites do exist. The performance of 

257 the CV predictions has been examined using several statistical metrics, including the Root Mean Squared 
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258 Error (RMSE), Relative Prediction Error (RPE; Eq. 2), coefficient of determination (R2), Mean Prediction 

259 Error (MPE; Eq. 3), and the slope (b) and intercept (a) of the linear regression between the predicted and 

260 observed PM2.5. The RPE and the MPE are calculated as:

261 RPE = × 100 Eq. (2)
RMSE
 PM2.5

 

262 Eq. (3)MPE =
1
N ∑N

i = 1|Predictedi ― Observed i| 

263

264 3. Results and Discussion 

265 3.1 Descriptive statistics

266 The histograms and descriptive statistics for all the dependent and independent variables used for 

267 the model development are illustrated in Figure S1 and Tables S3. The annual mean PM2.5 over the entire 

268 region was 114.49 ± 76.65 μg/m3 (N=8,233), and the seasonal mean PM2.5 were winter: 170.16 ± 88.46 

269 μg/m3, postmonsoon: 150.69 ± 73.16 μg/m3, premonsoon: 77.59 ± 34.38 μg/m3, and monsoon: 58.00 ± 

270 21.98 μg/m3. The overall mean AOD was 0.57 ± 0.39, and the seasonal means were winter: 3.28 ± 0.40, 

271 postmonsoon: 0.77 ± 0.55, premonsoon: 0.40 ± 0.20 and monsoon: 3.13 ± 0.28 (Table S3). Notably, while 

272 the highest PM2.5 was observed in the winter and the lowest PM2.5 was observed in the monsoon, the AOD 

273 showed much smaller variation with the highest retrievals during the postmonsoon and the lowest 

274 retrievals during the pre-monsoon seasons. The seasonal discrepancies between AOD and PM2.5, in 

275 particular, the low PM2.5 concentrations but high AOD values during the monsoon season, are attributed 

276 to the abundance in water vapor in the atmospheric column during monsoon (CWV =3.32 ± 0.65), which 

277 favors hygroscopic growth of the aerosol particles30,61. Hygroscopic growth of aerosol particles enhances 

278 scattering, thus resulting in higher AOD73. In contrast, PM2.5 is measured near the surface at a fixed RH of 

279 <40% and does not reflect hygroscopic growth as in the free air. Both the AOD and PM2.5 data showed a 

280 similar unimodal distribution, with the correlation coefficient between the daily mean PM2.5 and the 

281 combined Aqua and Terra MAIAC AOD being r =0.47 (p < 0.0001). The variables used in this study, i.e. 

282 meteorological variables, boundary layer height, and land use and the land cover attributes, were all 

283 significantly correlated (p < 0.0001) with the PM2.5 (Table S4).

284 Furthermore, the variance inflation factors (VIF) was used to quantify the collinearity among the 

285 predictors, which could affect the model performance. A VIF value of 10 was set as the threshold for 

286 collinearity. All the VIF values were <10, i.e. showing little to nil collinearity (Table S5).
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287 3.2  Models fitting and evaluation 

288

289 Figure 2: Scatterplot of the cross-validation results. Left column: sample-based cross-validation, right 

290 column: site-based cross-validation, upper row: RF model, and lower row: LME model.

291 Figure 2 shows scatter plots of the sample-based and the site-based CV predicted vs observed daily 

292 mean PM2.5 for the LME and the RF models. Clearly, the RF model performed better, with R2 of 0.87 and 

293 RMSE of 28 μg/m3 (irrespective of the CV method applied), compared to the LME model (R2 ~78%, RMSE 

294 ~36 μg/m3). Both the RF and LME models tend to underestimate the ground-level PM2.5 concentrations, 

295 especially on highly polluted days (PM2.5 >100 μg/m3), with the underestimation more severe when using 

296 the LME model compared to the RF model. Since the sample-based and site-based CV methods resulted 

297 in almost identical results, both the LME and RF models were apparently not over-fitted to the data, 

298 suggesting a good spatial predictive power. Still, the RF model outperformed the LME in terms of accuracy, 

299 having lower RPE (RF: 24.5%, LME: ~ 31.6%).
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300 To evaluate the performance of the RF and LME models at different temporal averaging scales, 

301 the weekly, monthly, seasonal, and annual PM2.5 means were calculated based on daily predictions from 

302 days for which >20% of the site-specific daily PM2.5 predictions were available (figure S2 and Table S6). 

303 Like on the daily scale, the RF model was more accurate than the LME model also on the weekly, monthly, 

304 seasonal, and annual scales, with high R2 (0.91-0.92), a slope close to unity (0.88-0.9), and a lower RPE 

305 (monthly: 15.1%, seasonal: 13.9%, annual: 8.8%).

306

307 Figure 3: Spatial distribution of the R2 (left panels) and RMSE (right panels) between the observed and 

308 predicted PM2.5 using the RF model. Upper row: across the whole IGP region, lower row: the Delhi area.

309 Figure 3 shows the spatial distribution of the site-based CV performance metrics of the RF model, with 

310 Fig. 3(a, b) depicting the R2 and RMSE across the IGP, respectively, and Fig. 3(c, d) focusing on the Delhi 

311 city. The overall IGP mean R2 was 0.81, with 85% of the stations showing R2 >0.7. The lower R2 (<0.6) were 

312 found at the northwest IGP, which may be attributed to the small number of data points (collocations) in 

313 this region due to limited PM2.5 (only a few months), and may not represent the entire year. Similarly, 

314 while the IGP average RMSE was 26.7 μg/m3 a relatively high RMSE values (>30 μg/m3) were evident in 
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315 few stations in the middle and lower IGP, attributed to the high PM2.5 levels throughout the year (annual 

316 average >150 μg/m3). Since the model was trained with around 50% of the data obtained from stations in 

317 Delhi, therefore the performance metrics were relatively better than the stations located in upper and 

318 lower IGP. Overall, the RF model achieved satisfactory performance and was able to capture most of the 

319 variability in the PM2.5 across the region, with R2 >0.7 in most of the monitoring stations. 

320 The seasonal variation in aerosol sources and meteorological variables also affected the AOD-PM 

321 model performance seasonally. In premonsoon and monsoon seasons, the IGP is affected by aerosols 

322 transported by the southwest monsoon and frequently associated with higher wind speed and deeper 

323 boundary layer. While in winter, the PM2.5 primarily concentrates near the surface due to shallow 

324 boundary layer and slower wind speed61,62. Model performances both in cold seasons i.e., winter (RPE: 

325 20.9%) and postmonsoon (RPE: 22.3%) was also compared with warm seasons including premonsoon 

326 (RPE: 28%) and monsoon (RPE: 26.5%) and shown in Table S7.  The larger slope of the fitting line for colder 

327 seasons reflect a higher PM2.5 that was concentrated near the surface due to a shallow PBL (788-1113m) 

328 compared to the warmer seasons when the PBLH was relatively higher (1673-1901m)74. 

329 3.3 Predicted PM2.5 over IGP 

330 Figure 4 shows the annual mean satellite-based PM2.5 estimates for IGP at 1 km grid resolution, as 

331 derived from the RF model. The overall estimated annual mean PM2.5 (July 1st, 2018 to June 30th, 2019) 

332 was 112.7 μg/m3, which exceeds the 40 μg/m3 Indian National Ambient Air Quality Standards (NAAQS). In 

333 particular, the middle and lower IGP regions experience higher PM2.5 concentrations (>110 μg/m3), with 

334 around 79.3% of the area experiencing an annual mean PM2.5 concentration between 110-150 μg/m3. The 

335 highest annual mean PM2.5 was found over the state of Bihar, West of Bengal, and Bangladesh, with PM2.5 

336 concentrations exceeding 130 μg/m3. The high PM2.5 levels in the middle and lower IGP are most likely 

337 due to the combined contributions of local sources and long-range transport from the upper IGP61.
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338
339 Figure 4: Spatial distribution of annual mean PM2.5 estimates at 1 km grid resolution over IGP. 

340 Seasonally, a significant variation is noted across the region with the highest PM2.5 levels recorded in 

341 winter (DJF) (154 ± 22.4 μg/m3) (Fig. S3). Spatial differences are also evident, with about 66% of the IGP 

342 exposed to PM2.5 concentrations >150 μg/m3 in the winter, and 25% of the IGP region (mainly the middle 

343 and lower IGP) experiencing PM2.5 >170 μg/m3. High PM2.5 levels are also estimated during postmonsoon 

344 (ON; 128.8 ± 16.0 μg/m3), with about 87% of the IGP exposed to PM2.5 in the range 110 - 150 μg/m3. The 

345 lowest PM2.5 levels were estimated in the monsoon and premonsoon seasons, with mean PM2.5, mean of 

346 59.9 ± 5.9 μg/m3 and 80.9 ± 9.5 μg/m3, respectively. 

347 Taking Delhi as an example for one of the most heavily PM2.5-polluted metropolitans/megapolises 

348 in South Asia and the world, we also examined the capability of our model to capture PM2.5 variability at 

349 the urban scale. The true color image (Fig. 5a) and the annual mean PM2.5 estimates over Delhi (Figure 5b) 

350 show high PM2.5 concentration in central and eastern Delhi – the most densely populated areas, and lower 

351 levels in southern Delhi; which is greener and not as densely populated, with an overall annual mean of 

352 PM2.5 of 121.8 ± 7.4 μg/m3, i.e. 8% higher than the IGP mean PM2.5. These results suggest that both local 

353 particulate sources combined with long-range transport of aerosol from the north-west IGP, especially 

354 during stubble burning period 61, 75,76, could be captured by the model, which accounts for enhanced PM2.5 

355 concentrations in Delhi.

356 To critically examine a severe PM2.5 condition, we selected the stubble burning episode, which 

357 occurs every year in November in the Punjab and Haryana states, and affects the whole northern India76. 

358 Figure 5(c, d) shows the spatial distribution of active fires on November 8th, 2018, obtained from the VIIRS 
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359 and MODIS (Aqua and Terra) sensors (https://firms.modaps.eosdis.nasa.gov/) together with the 

360 estimated PM2.5. Clearly, areas located downwind of the fire spots experienced higher PM2.5 and the 

361 model shows good sensitivity for capturing these high PM2.5 areas, demonstrating the excellent capability 

362 of the model to identify pollution sources in both space and time. Examining the model performance at 

363 different Indian air quality categories, for PM2.5 >60 μg/m3 (moderate air quality) the CV R2 was 0.84 and 

364 the RPE was 21.8%, for PM2.5 >90 μg/m3 the R2 was 0.79 and the RPE was 19.8%, and for PM2.5 >120 μg/m3 

365 (very poor air quality) the R2 and RPE were 0.71 and 20.82%, respectively (Fig. S4). The model performance 

366 at low PM2.5 (cleaner conditions) was poorer than at the polluted conditions (Fig. S4). 

367
368 Figure 5: (a) RGB image, b) annual mean PM2.5 over Delhi, c) Active fire counts in the northwest IGP 

369 obtained from VIIRS and MODIS (Aqua and Terra) sensors on November 8th, 2018, and d) PM2.5 estimates 

370 superimposed by the wind direction during the same day.

371 4. Discussion

372 RF and LME models were developed to predict daily ground-level PM2.5 concentrations across the IGP, 

373 South Asia. A few studies have estimated PM2.5 in the IGP region based on satellite retrieved AOD. Dey et 

374 al.9 used AOD retrievals from the MISR sensor to estimate ground-level PM2.5 at a spatial resolution of 0.5˚ 
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375 x 0.5˚, using a scale factor obtained from the GEOS-Chem chemical transport model. Similarly, using a 

376 scale factor from GEOM-Chem, Chowdhury et al.58 estimated ground-level PM2.5 concentrations during 

377 the dry season (October–June) at a spatial resolution of 1km grid over the Delhi National Capital Region 

378 (NCR). Similarly, over Delhi, Mandal et al.59 estimated the PM2.5 from 2010 to 2016 at 1km spatial grid 

379 using the multi-stage prediction model. To the best of our knowledge, the current study is the first 

380 regional-scale study in South Asia to predict daily PM2.5 at a high spatial resolution (1km x 1km), using 

381 satellite retrievals of AOD and CWV, together with meteorological and land use information, and applying 

382 both the random forest (machine learning) algorithm as well as an advanced statistical model (LME). To 

383 date, only few attempts were made to use satellite-based AOD for estimating ground-level PM2.5 across 

384 South Asia, as the region is severely constrained by the availability of quality surface monitoring data 

385 which are essential for model calibration and validation. Taking advantage of the recently established air 

386 quality monitoring network, we developed regional-scale models for estimating daily PM2.5 

387 concentrations over the IGP. The RF model exhibited adequate performance and higher accuracy than the 

388 LME model, with better cross-validated explained variance (R2 =0.87) and lower prediction error (RPE 

389 =24.5%). Our RF model performed similarly to- or better than previous RF models that were developed 

390 for China (R2= 0.83-0.85, RPE=30.7%-35.9%)53,54 and the USA (R2=0.80, RPE=29.2%)55. The model showed 

391 satisfactory predictive capability across the region with comparable site-based CV and sample-based CV 

392 results. Moreover, the RF model also revealed high accuracy in estimating weekly (R2 =0.91, RPE =17.7%), 

393 monthly (R2= 0.92, RPE= 15.5%), seasonal (R2 =0.92, RPE =13.91%), and annual (R2 =0.90, RPE =8.8%) mean 

394 PM2.5 levels. The high spatial resolution and low-bias of the PM2.5 estimates (both weekly and monthly 

395 mean) support using it in different research domains, especially in environmental epidemiology and 

396 climatological studies.

397 Due to the lack of historical PM2.5 records across the IGP, the year-to-year variability in PM2.5 

398 concentrations cannot be assessed. Similarly, the insufficient number of observations and the low PM2.5 

399 concentrations in the northwestern IGP resulted in poor model performance compared to other parts of 

400 IGP. Indeed, the model results in greater accuracy when high PM2.5 concentrations were experienced.

401 The modeled PM2.5 map showed significant spatial and temporal variation across the IGP. Seasonally, 

402 winter and postmonsoon are the more polluted seasons while the wet monsoon season is the cleaner 

403 one. Anthropogenic activities such as open burning stubble during postmonsoon, and burning of biomass 

404 and coal for heating and cooking, combined with shallow atmospheric boundary layer height, lead to 

405 enhanced PM2.5 concentrations during the winter and post-monsoon. The lower PM2.5 concentrations in 
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406 the monsoon period are due to wet deposition, strong convection, and higher boundary layer heights. 

407 Nonetheless, the PM2.5 concentrations in all seasons were higher than the Indian NAAQS (annual average: 

408 40 μg/m3).

409 Spatially, the middle and lower IGP showed poor air quality compared to the upper IGP. In winter, the 

410 middle and lower IGP experience very poor air quality, with mean PM2.5 concentrations >170 μg/m3. The 

411 highly spatially resolved PM2.5 estimates were found to have potential to identify PM2.5 hotspots and to 

412 study PM2.5 on small scales, especially in urban areas. Our model performed well at the urban scale, 

413 showing the good capability to capture spatial PM2.5 variability.

414 Finally, the random forest machine learning algorithm showed high skill in predicting PM2.5 by fusing 

415 satellite aerosol products, meteorological models’ output, and land use data. Future improvements of the 

416 model may involve using richer land use parameters (i.e. the road network, vehicle volumes) and 

417 emissions data (agricultural residues burning, industries emissions inventory, municipal solid waste 

418 burning, etc.) which may be helpful to further improve the reliability of the AOD-PM model across the 

419 Indo-Gangetic plain. 
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