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Abstract
The present study evaluates the performance of Conformal-Cubic Atmospheric Model (CCAM) simulations downscaled from
six global climate models (GCMs) (i.e., ACCESS1.0, CNRM-CM5, CCSM4, GFDL-CM3, MPI-ESM-LR, and NorESM-M)
and Max Plank’s Regional Model (REMO2009(MPI)) obtained from the South-Asia Coordinated Regional Climate
Downscaling Experiment (CORDEX) for analyzing the summer monsoon maximum temperature (Tmax) over the fifteen
Agro-Climatic Zones (ACZs) in India. The model simulations are compared with the two sets of observed data obtained from
the India Meteorology Department (IMD) and Climate Research Unit (CRU) for the period from 1981 to 2005. The results
illustrate that the skill of CCAM regional climate models (RCMs) is higher than the REMO in simulating the Tmax over all the
regions. The spatial patterns of Tmax in CCAM (CCSM) and CCAM (CNRM) are closer to IMD, while the Tmax distributions in
CCAM (CNRM), CCAM (CCSM), and CCAM (BCCR) agree well with the CRU, and correlation coefficient (CC) is more than
0.6; however, large positive biases in all RCMs are depicted over the Himalayan regions. The inter-comparison among all the
RCMs suggest that the CCAM (CNRM) and CCAM (CCSM) are rendering as the foremost models in simulating Tmax over
different ACZs. Performances of these two models also infer the usefulness of the model products for impact studies over the
individual ACZs. However, the existing systematic biases in the RCMs impeded the model performance and it is necessary to
remove the model bias prior to some real-time application. In this study, two bias correction methods, i.e., linear scaling (LS) and
distribution mapping (DM), have been used to correct RCM output bias. It is found that the model performance using DM
correction is better than LS method. The performance validations are evaluated based on the probability density function (PDF),
CC, and standard deviation (SD) with 95% confidence level. The model evaluation has also been justified using mean absolute
error (MAE) index, Nash-Sutcliffe coefficient (NS) index, percent bias (Pbias), and the Willmott’s index of agreement (d) which
confirm the research findings. The results are providing an effective guidance on the usefulness of bias corrected RCMs over a
particular ACZs for impact assessment.

1 Introduction

Observation confronts us with information about past climate
as well as present climate condition, and according to Field
(2014), the information about possible future climate is ob-
tained through the numerical climate models. Nowadays, un-
der vulnerable climate, projecting reliable upcoming changes
in future climate is very important to develop the required
strategies for reducing losses caused by natural calamities.
Climate models are in great importance to study the present
and future climatic pattern (Giorgi et al. 2012; Giorgi and
Gutowski 2016; Luo et al. 2018; Mall et al. 2018; Bhatla
et al. 2018a, 2019a, 2019b). However, various climate models
are available worldwide with fine resolution and they are de-
pendent on various assumptions and boundary forcing
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(Almazroui 2012; Bhatla et al. 2018a; Ghosh et al. 2019;
Mishra et al. 2020). Depending on particular time period and
topography, some models perform well, and some do not.
According to Bhatla et al. (2016) and Ghosh et al. (2019),
the complexity in model simulation over a particular terrain
are generally influenced by many factors such as complex
topography, coastal boundary, and lack of unbiased initial
and lateral boundary conditions. The effects of regional forc-
ing over the steep topography of the Himalayas and the
Western Ghats are not been fully captured by the global
models because of their coarse resolutions where regional cli-
mate models (RCMs) perform better to capture those local
climate properties (Sinha et al. 2013; Dash et al. 2013; Luo
et al. 2018; Mishra and Dwivedi 2019; Mishra et al. 2020).

One of the South Asian country India has a very complex
topography with heterogeneous elevation and consists four
major regions, i.e., the plains, the mountains, the southern
peninsula, and the desert, and all are extremely vulnerable at
various degree to climate change (Mall et al. 2006). Therefore,
it is crucial to evaluate the model performance to estimate the
impact of climate change over India and its sub-regions
(Kodra et al. 2012; Singh et al. 2018). The coarser spatial
resolution ranging from 1.0° to 3.8° and the systematic biases
of GCMs limit the examination of the possible impacts of
climate change and adaptation strategies on a regional and
local scale. The Coupled Model Intercomparison Project 5
(CMIP5) models involve notable uncertainties in capturing/
simulating the climate features like regional convection and
circulations (Sabin et al. 2013; Huang et al. 2013;Mishra et al.
2014; Jayasankar et al. 2015). On the other hand, the
Coordinated Regional climate Downscaling Experiment
(CORDEX) has taken by multiple countries to perform re-
gional downscale of global climate models (GCMs) to provide
reliable estimate of regional climate for future scenarios
(Giorgi et al. 2009, 2012). Mishra et al. (2018) have explored
and validated the CORDEX models and their driving GCMs
from CMIP5, and compared them against the observed tem-
perature and rainfall over India. They have experienced the
satisfactorily model performance in GCMs as well as the
CORDEX output but the downscaling does not lower the
errors. Various studies have conducted for climate model eval-
uation using different climatic variables over the Indian re-
gion, different sub-regions, and over a particular zone
(Déqué et al. 2007; Dash et al. 2013; Mall et al. 2018;
Bhatla et al., 2018a,b, 2019a,b). Nowadays apart from ever
increasing population, policy and decision-makers need infor-
mation about how future climate is going to affect the crop
production, growth, and finally crop yield to devise the future
strategies in different parts of India. Several studies have been
carried out on climate change impact on agriculture in India
(Yadav et al. 2016; Mall et al. 2018; Bhatla et al. 2020a;
Sonkar et al. 2019; Bhatt et al. 2019; Tyagi et al. 2019) and
over the world using different GCMs and RCMs output (Piao

et al. 2010; Iizumi et al. 2017; Mall et al. 2018; Bhatla et al.
2019a; Sonkar et al. 2020). However, the reliable climatic
projection at different agro-climatic zones (ACZs) is not avail-
able till date.

Several studies show that the RCMs are better than GCMs
(Sinha et al. 2013), but the RCM simulation is biased over the
mountainous and other complex topographic region (Murphy
1999; Fowler et al. 2007). All the models possess large biases
over the north eastern and Himalayan regions as well as over
the Western Ghats (Tiwari et al. 2016a; Basha et al. 2017).
These biases make the impact assessment studies very chal-
lenging. Evaluating the biasness in model simulation is the
outmost important to get the best estimate (Giorgi and
Francisco 2000). Several bias correction methods have been
developed to correct climate model simulations with the ob-
served meteorological variables, ranging from the simple lin-
ear scaling (LS) approach to the sophisticated distribution
mapping (DM) (Teutschbein and Seibert 2012). The scaling
approach mainly includes the linear or nonlinear formula that
adjusts the climatic factors based on the differences between
the observed and climate model mean. While DM, the vari-
ance scaling method (VS) matches the statistical distribution
of regional climate model (RCMs) simulated climatic factors
to the distribution of observation. The distribution-based
quantile mapping assumes that the climatic factors obey a
certain distribution (e.g., Gaussian distributions for tempera-
ture) (Fang et al. 2015; Luo et al. 2018). Therefore, an effort to
correct the biases in RCM-simulated meteorological variables
would be very significant before they are considered for im-
pact studies, especially for those regions where all the meteo-
rological and agricultural variables are very sensitive due to
the climate changes (Fang et al. 2015; Sonkar et al. 2019).
Generally, VS and DM greatly perform for temperature than
a simple LS (Teutschbein and Seibert 2012; Fang et al. 2015;
Luo et al. 2018).

Despite of all these recent studies, still there are rare literature
to evaluate RCM output for each ACZs. Moreover, studies re-
garding the best suited model/s along with the best fitted bias
correction method/s for a particular ACZs in India is still very
limited (Mall et al. 2016). Increasing in the maximum tempera-
ture (Tmax) during monsoon season (Bhatla et al. 2020b) has a
great impact on monsoonal crops (Birthal et al. 2014; Zacharias
et al. 2015; Sonkar et al. 2019). Previous studies have demon-
strated that the increasing rate 0.5 °C of annual temperature and
the extreme temperature increasing rate are being expected to 1–
4 °C by the mid of twenty-first century over the different parts of
India (Kumar et al. 2006; Yang et al. 2012; Hijioka et al. 2014;
Bal et al. 2016). So, it is necessary to keep track of changes of
temperature in the present conditions. One of the most challeng-
ing tasks is to measure the uncertainty of the accuracy in temper-
ature pattern over India as well as over different ACZs.
Nowadays, under vulnerable climate, study using RCMs is of
great opportunity to understand the climatic pattern for present as
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well as for future scenario. Moreover, the impact of climate
change is not only limited over the large scale; a severe impact
in the Indian subcontinent has noticed that is ruling the crop
production over the Indian sub-regions (Mall et al. 2006; Field
2014; Hijioka et al. 2014) which is rising the challenges to the
food security to feed more than 1.3 billion people of India (Mall
et al. 2017; Bhatla et al. 2019a). Apart from increasing popula-
tion in India, the policy and decision-makers also need the useful
information about how future climate will affect the crop produc-
tion and growth to devise the future strategies in different parts of
the agro-economic country India (Mall et al. 2019).

Based on this above motivation, the first objective of this
paper is aimed to evaluate the performance using seven dif-
ferent RCMs, viz. CCAM (ACCESS), CCAM (CCSM),
CCAM (CNRM), CCAM (GFDL), CCAM (MPI), CCAM
(BCCR), and REMO (IITM-CORDEX), in simulating Tmax

during the Indian summer monsoon (ISM) over India and its
fifteen ACZs during 1981–2005. Second objective is to mea-
sure the uncertainty in temperature pattern over India as well
as different ACZs with and without bias correction.

2 Data and adopted methodology

Daily Tmax data at 0.5° × 0.5° resolution from India
Meteorological Department (IMD) (Srivastava et al. 2009)
and monthly Tmax data 0.5° × 0.5° resolution from the
Climate Research Unit (CRU) of University of East Angelia
are considered as the reference datasets for the period of
25 years (1981–2005). The Coordinated Regional Climate
Downscaling Experiment (CORDEX) dataset for the South
Asia region has been used. The CORDEX data encompassed
the dynamically downscaled data Atmosphere-Ocean coupled
General Circulation Model (AOGCM) products run under the
Coupled Model Inter-comparison Project Phase 5 (CMIP5)
(Taylor et al., 2012) for the South Asia region. The detailed
description of CORDEX data has been provided in the
Table 1. The CORDEX for South Asia data were available
from the Earth System Grid Federation (ESGF) and the
Climate Data Portal at the Centre for Climate Change
Research (CCCR), Indian Institute of Tropical Meteorology
(IITM), through the web portal http://cccr.tropmet.res.in. The
RCM simulations of CCAM (ACCESS), CCAM (CCSM),
CCAM (CNRM), CCAM (GFDL), CCAM (MPI), CCAM
(BCCR), and REMO of IITM-CORDEX are downscaled
from the Global Climate Models (GCMs), viz. ACCESS1.0,
CCSM4, CNRM-CM5, GFDL-CM3, MPI-ESM-LR, Nor-
ESM-M, and MPI-ESM-LR, respectively, over the South
Asia CORDEX domain and considered for the present study
(Table 1).

This study has explored the model performance over the fif-
teen ACZs of India. The Planning Commission of India has
classified these fifteen ACZs in 1989 depending upon the major

crops growing area, climate conditions, soil types, rainfall
amount, temperature pattern etc. (Alagh et al. 1989; Pradhan
et al. 2014). These ACZs are named as the western Himalayan
region (WHR), eastern Himalayan region (EHR), trans-Gangetic
plains region (TGPR), upper Gangetic plains region (UGPR),
middle Gangetic plains region (MGPR), lower Gangetic plain
region (LGPR), western dry region (WDR), central plateau and
hills region (CPHR), eastern plateau and hills region (EPHR),
western plateau and hills region (WPHR), southern plateau and
hills region (SPHR), east coast plains and hills region (ECPHR),
west coast plains and hills region (WCPHR), Gujarat plains and
hills region (GPHR), and the islands region (IR) (Fig. 1). As the
IR is mostly covered by forest and agriculturally is not very
important (Pradhan et al. 2014), thus, this region is not consid-
ered in this study.

A perfect model’s data distribution pattern should resemble
with the observation (Piani et al. 2010a). Previous studies
showed the distribution diagram as one of the important tools
to assess the similarity between model simulation with respect
to the observed dataset (Taylor 2001). Mathematically, the
formula of Taylor diagram is:

E02 ¼ σ f
2 þ σr

2 þ 2σ fσrρ ð1Þ
where ρ is the correlation coefficient (CC) between model and
observation, E′ is the centered root mean square (RMS) dif-
ference between model and observation, and where σf and σr
are the variances of the model simulation and observation,
respectively. Taylor diagram is used to validate simulated sea-
sonal Tmax with the IMD and CRU.

2.1 Bias correction

It is necessary to employ the statistical tools for removing the
biases to deal the model uncertainty in the simulated results
quantitatively. From a long past various multivariate and uni-
variate bias correction methods have been developed (Wood
et al. 2004; Leander et al. 2008; Maraun et al. 2010), and
several bias correction methods are implemented to minimize
the RCM simulated errors to commensurate with observed
meteorological variables, such as the simple scaling and DM
approach (Teutschbein and Seibert 2012). The scaling ap-
proach mainly adjust the climatic factors based on the differ-
ences between the observation and RCM means using linear
or nonlinear formulae such as the VS method. On the other
hand, the DM matches the statistical distribution of RCM
simulation to the distribution of the observations. The VS
method was developed to correct both the mean and variance
of normally distributed variables such as temperature, while
DM helps to correct the data distribution by matching the
distribution of the model simulation to the observations.
Several previous studies (Teutschbein and Seibert 2012;
Fang et al. 2015; Luo et al. 2018) reported that the VS and
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DMmethods have great flexibility to perform on temperature.
Thus, the selection of these two important univariate bias cor-
rection methods are considered because of their suitability in
application of removing the RCM systematic biases over dif-
ferent topographical regions in India.

The temperature is assumed to be normally distributed so
Gaussian distribution with mean μ and standard deviation σ
(Teutschbein and Seibert., 2012) is described as follows:

f N x∨μ;σð Þ ¼ 1

σ� ffiffiffiffiffiffi

2π
p � e

− x−μð Þ2
2σ2 ; xεε ð2Þ

For both bias correction method (VS and DM), the efficacy
of the methods is explored with respect to the IMD daily
observation as well as with respect to the CRU monthly data
for the duration 1981–2005.

2.1.1 Variance scaling

The VS successfully implemented for the bias correction of
temperature based on mean and variance (Terink et al. 2010;
Teutschbein and Seibert 2012). The equation for VS method
is conclusively described on Feng et al. (2015) and the math-
ematical form is as follows:

Tcor;m;d ¼ Traw;md−μ Traw;m
� �� �� σ Tobs;m

� �

σ Traw;m
� �

þ μ Traw;m
� � ð3Þ

Tcor,m,d and Traw,m,d are corrected and raw model tempera-
ture, respectively, for the dth day of mth month. μ is the ex-
pectation operator and μ (Tobs,m) represents the mean value of
observed data at particular month m. σ represents the standard
deviation.

2.1.2 Distribution mapping

DM uses the transformation function to remove the bias by
adjusting mean, quantiles, and standard deviation so that the
distribution of the model and observation should match.
Correction using DM method can be done using various
methods like probability mapping and empirical cumulative
distribution function mapping (ECDF) (Teutschbein and
Seibert 2012; McGinnis et al. 2015). Also, the extreme value
in the DM bias correction method is preserved (Themeßl et al.
2012). The mathematical expression of DM can be expressed
as below:

Table 1 Model details of
CORDEX South Asia data
(source: http://cccr.tropmet.res.
in).

Experiment
name.

RCM description Driving
CMIP5
AOGCM

CMIP5 modeling center Resolution

CCAM
(ACCES-
S)

Commonwealth Scientific
and Industrial Research
Organization (CSIRO),
Conformal-Cubic
Atmospheric Model
(CCAM). Contributing
Institute: CSIRO Marine
and Atmospheric
Research, Melbourne,
Australia

ACCESS1.0 CSIRO, Australia 0.5° × 0.5°

CCAM
(CNRM)

CNRM-CM5 Centre National de
Recherches
Me’te’orologiques
(CNRM), France

0.5° × 0.5°

CCAM
(CCSM)

CCSM4 National Oceanic and
Atmospheric
Administration (NOAA),
Geophysical Fluid
Dynamics Laboratory
(GFDL), USA

0.5° × 0.5°

CCAM
(GFDL)

GFDL-CM3 National Oceanic and
Atmospheric
Administration (NOAA),
Geophysical Fluid
Dynamics Laboratory
(GFDL), USA

0.5° × 0.5°

CCAM
(MPI)

MPI-ESM-LR MPI-M, Germany 0.5° × 0.5°

CCAM
(BCCR)

NorESM-M Norwegian Climate Centre
(NCC), Norway

0.5° × 0.5°

REMO
2009
(MPI)

Description: MPI Regional
model 2009 (REMO2009);
Contributing Institute:
Climate Service Center,
Hamburg, Germany

MPI-ESM-LR Max Planck Institute for
Meteorology (MPI-M),
Germany

0.5° × 0.5°
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Tcor;m;d ¼ F−1
N FN Traw;m;d∨μraw;m;σraw;m

� �
∨μobs;m;σobs;m

� �

ð4Þ
where FN

−1 represents the inverse Gaussian CDF. μraw,m is the
fitted mean for the uncorrected model, and μobs,m is the ob-
served temperature for a given month m. σraw,m and σobs,m are
the respective standard deviations for uncorrected model and
observe data, respectively.

2.1.3 Performance evaluation of climate models

The performance of climate models has been evaluated based
on their abilities to resemble observed temperature. Bias

correction methods can be evaluated depending upon
the bias corrected model’s simulation if they are closer
to the observations. Depending on this criterion, the best
and worst performing zone for a particular model has
been considered. The performance of different models,
as well as the bias correction methods, quantifies by a set
of statistical parameters to assess the observed and the
model simulations. The mean, median, and standard de-
viation (SD) of the model simulation from the observed
data have been applied to study the descriptive nature,
variability in the model compared with the observed data
(Li et al. 2010; Jakob et al. 2011; Piani et al. 2010a,
2010b). The bivariate correlation between the model
simulation and the observed data has been done using
CC analysis.

Fig. 1 Agro climatic zones of India
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For the related bias and error estimation, two methods,
namely percent bias (Pbias) and MAE, are applied
(Gudmundsson et al. 2012; Fang et al. 2015). The Pbias mea-
sures the percentage changes in the model simulation with
respect to the observed dataset. The positive (negative) Pbias
values indicate an overestimation (underestimation) in the
model simulation (Fang et al. 2015). The MAE demonstrates
the average errors between the observed values and model
simulated values (Fang et al. 2015).

PBIAS ¼ ΣN
i¼1 Yobs

i −Y sim
i

� �

ΣN
i¼1 Yobs

i

� � *100 ð5Þ

MAE ¼ ∑N
i¼1 Yobs

i −Y sim
i

�
�

�
�

N
ð6Þ

where Yi,
obs and Yi,

sim are the ith observed and simulated var-
iables, and N is the total number of observations.

The Wilmott’s degree of index (d) (Willmott and Wicks
1980) and Nash-Sutcliffe coefficient (NS) are another most use-
ful statistical approaches tomeasure the model skills when com-
pared with the observations. The index of agreement (d) is used
as a standardizedmeasure of the degree ofmodel simulation and
the observation (Willmott and Wicks 1980), where the value of
d ranges between 0 and 1. The value of d equal to 1 shows a
seamless match, whereas 0 indicates no agreement in the model
simulation with the observation. The NS value indicates the
relative magnitude of the residual error in comparison with the
observed error (Nash and Sutcliffe 1970). The NS ranges be-
tween − ∞ and 1, where NS equal to 1 indicates a perfect match.

d ¼ 1−
ΣN

i¼1 Yobs
i −Y sim

i

� �2

ΣN
i¼1 Yobs

i −Ymean
�
�

�
�þ Y sim

i −Ymean
�
�

�
�

� �2 ð7Þ

NS ¼ 1−
ΣN

i¼1 Yobs
i −Y sim

i

� �2

ΣN
i¼1 Yobs

i −Ymean
� �2 ð8Þ

where Yi,
obs and Yi,

sim are the ith observed and simulated var-
iables, Ymean is the mean of observed variables, and N is the
total number of observations.

3 Results and discussion

This section explains the study of climatological spatial distri-
bution of average Tmax in observations (IMD and CRU) and
RCMs’ simulations for the period from 1981 to 2005.

Section 3.1 deals with the evaluation of RCM performance
with and without bias correction of Tmax during June–
September (JJAS) over the Indian landmass. Section 3.2 pre-
sents the result and the key findings obtained from the RCM
evaluation over the fifteen ACZs of India using raw and bias-
corrected outputs.

3.1 Evaluation of climate models with and without
bias correction over all India

The spatial distribution of model simulated Tmax is analyzed
with respect to the observed climatology of the IMD and CRU
over India (Fig. 2). As it is mentioned by Piani et al. (2010a),
the spatial distribution of model simulation should look like
distribution obtained from the observed data. An increase in
Tmax for monsoon season has a massive impact on monsoonal
crops (Birthal et al. 2014; Zacharias et al. 2015). Therefore, it
is necessary to study the variability in the mean temperature
over the region. The IMD-observed data are showing an av-
erage Tmax between 30 and 45 °C over India where the CRU
observation is showing lesser magnitude than the IMD in Tmax

spatial distribution (ranges are between 30 and 40 °C). The
extent of Tmax is more in the western part (40–45 °C) and the
central of India (35–40 °C). Over WHR and EHR, all the
models illustrate a large deviation in terms of the data distri-
bution. The deviations are more when the simulations are
compared with the IMD rather than CRU. The possible reason
may be because of the complexities in high elevation (Bhasha
et al., 2017) and unavailability of sufficient observation
weather station over the regions (Pai et al., 2014). The evalu-
ation among the RCM output shows that the CCAM simula-
tions are closer to the observation (IMD and CRU) dataset
than REMO simulation. The overestimation in Tmax over
western part of India and the Indo Gangetic plain (IGP) is also
observed in the REMO simulation.

The IMD and CRU possess the temperature ranges of 38–
42 °C and 34–38 °C, respectively, where the CCAM models
have a range of 42–48 °C, while REMO shows a range of 48–
54 °C over TGPR. All the RCMs are underestimating the Tmax

as compared with the observations. The model deviations are
more concise in the Tmax relative to CRU than IMD. A range
of 36–42 °C and 33–36 °C in Tmax is found over MGPR in
IMD and CRU data, respectively, where the CCAM model-
simulated temperature varies between 36 and 46 °C. So, all the
model simulations underestimate the observation over
MGPR. Over UGPR and LGPR, all CCAM model-
simulated data distributions are well in agreement with IMD
but a deviation between 2 and 3 °C is noticed with respect to
the CRU. Model simulations are in better agreement with
IMD than CRU over MGPR and LGPR. All the model-
simulated Tmax are found closer to the IMD than CRU over
central India, where the performance is comprising over
WDR, CPHR, GPHR, and EPHR. But the model performance
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over WPHR, SPHR, and ECPHR regions is similar to the
CRU but is different from IMD, where the performance of
CCAM (CCSM) and CCAM (CNRM) is better among all
the other models over ECPHR. REMO is underestimating
the Tmax compared with IMD and CRU observations over all
the regions expect WHR, EHR, and WCPHR. Spatial distri-
bution of RCM simulations over WCPHR is related to the
both observations even without bias correction. Overall, it is
found that all the model simulated Tmax is closer to IMD rather

than CRU over most of the northern India and central India;
however, the simulations are found closer to CRU over the
southern India.

In the Taylor diagram (Fig. 3), the blue-dotted lines resemble
the standard deviations and the black-dotted lines symbolize the
correlations between simulations and observations, while the
deep-green-dotted lines correspond to the central root mean
square error (RMSE). Figure 3 shows spatial correlation be-
tween themodels and observed Tmax (IMD and CRU). It is seen

Fig. 2 The observed maximum temperature (°C) in summer monsoon
season. (a, b) IMD and CRU, respectively, and the RCM simulations of
(c) CCAM (ACCESS), (d) CCAM (CCSM), (e) CCAM (CNRM), (f)

CCAM (GFDL), (g) CCAM (MPI), (h) CCAM (BCCR), and (i)
REMO, during 1981–2005 over India and its agro climatic zones
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that the correlation values are less than 0.5 for REMO and
CCAM (GFDL)whereas higher correlation values (greater than
0.6) are found for CCAM (BCCR) and CCAM (CNRM). The
highest correlation (0.71) is achieved for CCAM (BCCR),
while the lowest correlation (0.29) is found for REMO when
computed with the CRU. So, in terms of spatial CC of different
RCMs over all India, CCAM (CNRM), CCAM (BCCR), and
CCAM (CCSM) are performing better than the rest of the
RCMs used in the present study. The performance of all the
RCMs for each ACZs will be discussed in the later sections.
Tables 2 and 3 show different time series-based statistics with
respect to the IMD and CRU, respectively, as discussed in
Section 2. Table 2 shows that CCAM (MPI), CCAM
(BCCR), and REMO exhibit higher MAE values (more than
5 °C) with respect to the IMD’s Tmax dataset. On the other side,
the lowestMAE and Pbias (4.69 °C and 4.83%, respectively) are
observed in the CCAM (ACCESS) followed by CCAM
(CCSM) and CCAM (GFDL) simulations. After the bias cor-
rection, the RCM simulation successfully reduce the value of
MAE and Pbias. Comparing the results of both bias correction
methods on the basis of NS and d values, it is illustrated that
DM method is superior over the VS method of bias correction
(Table 2).

The detailed analysis with respect to CRU for all the RCM
simulation is provided in Table 3. All the RCMs except

REMO have a higher value of MAE and Pbias with respect
to CRU observation. The minimum MAE and Pbias (4.03 °C
and − 6.34%, respectively) values are found in CCAM
(ACCESS). The value of NS and d gets improved for all the
models after bias correction using both VS and DM. The bias-
corrected CCAM (ACCESS) model Tmax using DMmethod is
depicting the lowest MAE and Pbias values. Furthermore, the
frequency-based statistics (mean, median, and SD) of ob-
served (IMD and CRU), model simulated (raw and bias-
corrected) have been evaluated (Fig. 4 and Table 4). It is
evident from Fig. 4 that distributions of all uncorrected or
rawmodel simulations are quite different than the observation.
For all the RCMs, both bias correction methods, i.e., LS and
DM, are performing almost similar regarding distribution of
climate data, and this remark corroborates with the previous
study by Fang et al. (2015). Furthermore, bias correction
methods are performing best when compared with the CRU
observations. Concurrently, both the bias correction methods
could be able to improve also the RCM model skill when
compared with the IMD data; however, the improvement is
lesser when compared with the IMD than the CRU data.
However, the distribution of bias-corrected data in the inter-
quartile range is still different from the observation. Table 4
refers that both the DM and VS are performing closely with a
slightly betterment noticed in DM thanVS. The mean value of
bias-corrected result is much closer to the IMD mean and SD
of Tmax (39.14 °C and 2.92 °C, respectively) over all India.
With respect to the CRU observation, bias-corrected model

Table 2 Statistical skill score of the different regional climate models
(raw or simulated, bias-corrected using VS and DM techniques) comput-
ed against the India Meteorological Department (IMD) analysis gridded
datasets during the baseline period 1981–2005. The model data are inter-
polated to the IMD grid points before carrying out the statistical analysis

Model . Method MAE NS Pbias d

CCAM (ACCESS) Simulated
VS
DM

4.69
1.49
1.35

− 6.33
0.66
0.70

10.08
− 1.08
1.006

0.625
0.837
0.834

CCAM (CCSM) Simulated
VS
DM

4.83
1.66
1.63

− 6.91
0.49
0.52

16.07
− 2.612
− 2.02

0.621
0.829
0.826

CCAM (CNRM) Simulated
VS
DM

4.99
1.68
1.64

− 6.74
0.46
0.49

12.15
1.083
− 1.004

0.619
0.823
0.821

CCAM (GFDL) Simulated
VS
DM

4.87
1.63
1.60

− 7.03
0.48
0.51

11.65
1.89
1.19

0.629
0.835
0.833

CCAM (MPI) Simulated
VS
DM

5.01
1.71
1.68

− 7.18
0.45
0.48

13.01
1.76
− 1.14

0.623
0.831
0.829

CCAM (BCCR) Simulated
VS
DM

5.01
1.69
1.66

− 6.83
0.46
0.49

17.49
2.81
1.48

0.625
0.829
0.827

REMO Simulated
VS
DM

5.9
1.76
1.73

− 8.09
0.31
0.34

19.65
2.4
1.98

0.689
0.849
0.848

Table 3 Same as Table 2 but the statistical skill score is computed
against the CRU datasets

Model Method MAE NS Pbias d

CCAM (ACCESS) Simulated
VS
DM

4.03
1.64
1.38

0.33
0.85
0.87

− 6.34
1.01
0.78

0.878
0.935
0.935

CCAM (CCSM) Simulated
VS
DM

4.18
1.81
1.70

0.423
0.86
0.88

− 8.36
1.73
1.24

0.887
0.937
0.936

CCAM (CNRM) Simulated
VS
DM

4.60
1.86
1.65

0.61
0.85
0.87

− 6.75
1.07
1.02

0.890
0.934
0.934

CCAM (GFDL) Simulated
VS
DM

4.62
1.83
1.54

0.31
0.85
0.86

− 8.50
1.50
1.28

0.875
0.935
0.935

CCAM (MPI) Simulated
VS
DM

4.50
1.89
1.78

0.33
0.84
0.85

− 8.08
1.46
− 1.17

0.878
0.936
0.935

CCAM (BCCR) Simulated
VS
DM

4.28
1.92
1.81

0.34
0.81
0.85

− 7.53
1.25
1.18

0.882
0.933
0.933

REMO Simulated
VS
DM

7.83
1.90
1.19

− 0.73
0.63
0.67

− 22.79
9.47
8.31

0.736
0.937
0.937
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Table 4 Frequency-based
statistics (unit °C) of observed
(IMD, CRU), raw model-
simulated, and bias-corrected
maximum temperatures over
India

IMD (mean = 39.14,
median = 39.34, SD = 2.92)

CRU (mean = 33.68,
median = 35.69, SD = 6.46)

MODEL Method Mean Median SD Mean Median SD

CCAM (ACCESS) RAW

VS

DM

36.37

39.14

39.15

38.16

39.97

39.92

9.79

2.92

2.70

36.37

33.68

33.68

38.16

35.52

35.49

9.79

6.46

6.35

CCAM (CCSM) RAW

VS

DM

36.10

39.14

39.14

38.60

39.91

39.86

9.50

2.92

2.70

36.10

33.68

33.68

38.60

35.52

35.49

9.50

6.46

6.35

CCAM (CNRM) RAW

VS

DM

35.95

39.14

39.15

37.81

39.72

39.69

9.33

2.92

2.72

35.95

33.68

33.68

37.81

34.96

34.94

9.33

6.46

6.32

CCAM (GFDL) RAW

VS

DM

36.54

39.16

39.14

38.83

39.83

39.78

9.77

2.92

2.71

36.54

33.68

33.68

38.83

35.19

35.17

9.77

6.46

6.35

CCAM (MPI) RAW

VS

DM

36.40

39.14

39.15

38.91

39.90

39.85

9.34

2.92

2.71

36.40

33.68

33.68

38.91

35.34

35.32

9.74

6.46

6.35

CCAM (BCCR) RAW

VS

DM

36.21

39.14

39.15

38.32

39.79

39.75

9.49

2.92

2.72

36.21

33.68

33.68

38.32

35.11

35.09

9.49

6.46

6.33

REMO RAW

VS

DM

41.35

39.14

39.16

44.81

40.32

40.25

8.60

2.92

2.74

41.35

33.68

33.68

44.81

36.27

36.26

8.60

6.46

6.43

Fig. 3 Taylor diagram representing the spatial correlation, centered RMS difference, and standard deviation of maximum temperature computed
between RCM simulations and observations. a IMD and b CRU for summer monsoon season
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simulations are also closer to the mean and SD values except
for REMO simulation.

Figure 5 shows the probability density curves of Tmax for the
observed (IMD and CRU), uncorrected, and bias-corrected sim-
ulations of RCMs over all India. Model simulations except
REMO having probabilities greater than 0.1 are underestimating
and probabilities below 0.1 are overestimating the CRU. The
REMO-uncorrected simulation is underestimating the observed
data set of IMD and CRU. The bias correction method (VS and
DM) is performing better for simulations with probability values
above 0.1; however, for probabilities below 0.1, all the corrected
simulations are overestimating the observed probability. In all
CCAM model simulations, both the correction methods are
performing almost the same for matching the probability density
curve to the observed dataset.

3.2 Evaluation of climate models with and without
bias correction for agro-climatic zones

A detailed evaluation of seven RCM simulations of Tmax has
been carried out over 15 ACZs in India during the Indian
summermonsoon for the period 1981–2005. The performance
of different RCMs with and without bias correction (VS and
DM) for each ACZs has also been analyzed in this section.

3.2.1 Performance over Western Himalayan region

It is found that all the RCMs are overestimating the observed
Tmax, i.e., IMD and CRU over WHR (Fig. 6). In Fig. 6, Pbias

has been found in the ranges of 0.4–1, for most of the CCAM
models Tmax simulation. The large deviation is observed over
the Himalayan region because of very complex topographical
regions, and RCMs are not able to represent the actual eleva-
tion (Sinha et al. 2014) and it may be one possible reason for
poor performance of RCMs over that region. The CCAM
models simulation exhibits positive Pbias between 0.3 and
0.9 except for REMO, where it lies between – 0.2 and − 0.9
(Figs. 6 and 7). After applying VS bias correction method, the
Pbias values are reduced in the range of 0.05–0.3 compared
with IMD, while DM gives better result than VS as Pbias
values get reduced to 0.05–0.1. The Taylor diagram for
WHR correlation shows that the performance of all themodels
is poor than all the other regions as the correlation of the
simulations with observation is found to be lesser than 0.5
(Fig. 7). However, after bias correction, the results get im-
proved as correlations of bias-corrected values are greater than
0.5. The bias-corrected CCAM (BCCR) using DM method
shows a correlation of about 0.8 with both IMD and CRU.
The REMO also possess correlation as high as 0.8 with IMD
Tmax using VS and with CRU using DM. But comparison
between all the RCMs leads to conclusion that CCAM
(BCCR) and REMO are preferable than all other models and
bias correction method DM is better than VS for WHR.

3.2.2 Performance over Eastern Himalayan region

The model performance of Tmax simulation over EHR show-
ing Pbias values ranges between −0.05 and 0.5 with respect to

Fig. 4 The boxplot of observed (IMD and CRU), model-simulated (raw), and bias-corrected model simulation of seasonal maximum temperature (unit
in °C) using VS and DM method computed against IMD and CRU, respectively, over India during 1981–2005 (as listed in Table 4)

R. Bhatla et al.

Author's personal copy



(w.r.t) the observation. The bias correction methods (VS and
DM) are applied on all RCM simulations w.r.t IMD observa-
tion, which are improving the results over EHR, while for
some parts of EHR, results are getting depreciated. With
CRU observation, bias correction is improving the result of
RCMs as Pbias values get reduced. It is seen from the perfor-
mance evaluation of all the models and bias correction
methods in terms of spatial correlation (Fig. 8) that the
REMO and CCAM (BCCR) are giving the best results using
DM and VS, respectively. The complex topography eventu-
ally affects the bias correction output, and it is reported that
orographic correction is required to implement onmodel prod-
ucts for improving the model skill (Tiwari et al. 2016b).

3.2.3 Performance over lower, trans, upper, and middle
Gangetic Plains region

The RCM simulation and performance of Tmax with obser-
vation have been analyzed for lower, trans, upper, and
middle Gangetic Plains region. These regions form the
Indo-Gangetic Plains (IGP), which is one of the most im-
portant regions of India for agricultural productions. The
CCAM models are underestimating the observation (CRU)
and showing Pbias in the range of −0.1 to −0.3. The analysis
illustrates that the model having worst performance is se-
curing the best one after bias correction. For example, in
the REMO simulation, Pbias were in the range from −0.2 to
−0.5; it is noteworthy that after bias correction, the results
are improving drastically as the Pbias gets reduced to −0.1
to 0.05 over the IGP. The REMO performs the best over

IGP after bias correction (Figs. 6 and 7). Both the correc-
tion methods are performing almost similar over the IGP. It
is noticed that the efficiency of the bias correction is higher
when applied on REMO models and compared with CRU
over TGPR and UGPR as Pbias values get reduced to the
range of −0.05 to 0.05. With IMD as a reference, the Pbias
values of the uncorrected models varied between 0
and − 0.2, and after bias correction, Pbias values lie between
−0.05 and 0.05. The CCAM (ACCESS), CCAM (CCSM),
and CCAM (CNRM) are performing better after bias cor-
rection over the TGPR and UGPR, and the Taylor dia-
grams validate the performances of bias-corrected and
without bias-corrected regional model performances. The
DM method is performing better over the IGP in all the
way although the difference between two methods is
negligible.

3.2.4 Performance over Western Dry region

The comparison of several RCM performance to simulate the
seasonal Tmax for ISMR over WDR is indicating that CC
computed against both the IMD and CRU observation lies in
the range of 0.4–0.5 (Fig. 8). The application of two bias
correction methods (VS and DM) is significantly reducing
the negative Pbias associated with the RCMs. Interestingly,
the CC values are greatly enhanced (0.7–0.9) in all the
CCAM and REMO simulations after the bias correction.
However, it is noticed that the DM bias-corrected CCAM
(ACCESS) has the higher skill in representing Tmax over
WDR.

Fig. 5 Probability density curves of maximum temperature (°C) of observed (IMD and CRU), model-simulated (raw), and bias-corrected model
simulation using VS and DM method computed against IMD and CRU, respectively, during JJAS
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Fig. 6 Spatial distribution of mean percent bias of raw regional climate models’ simulation (first column), bias-corrected model simulation using VSmethod (in
second column), and bias-corrected model simulation using VS method (in second column) during 1981–2005 where IMD is considered as reference
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Fig. 7 Spatial distribution of mean percent bias of raw regional climate models’ simulation (first column), bias-corrected model simulation usingVSmethod
(in second column), and bias-corrected model simulation using DM method (in second column) during 1981–2005 where CRU is considered as reference
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3.2.5 Performance over eastern, central, western
and southern plateau hills region

The simulated Tmax of different RCMs are analyzed over the
Indian plateau region during ISM of 1981–2005. The Indian
plateau region is further subdivided into four important ACZs,
i.e., EPHR, EPHR, WPHR, and SPHR. The model simulation
of CCAM (ACCESS) over EPHR is in good agreement with
IMD’s Tmax, and Pbias values vary between −0.05 and 0.1. The
RCM models over EPHR are overestimating Tmax from the

observed dataset (IMD) except REMO. It is noteworthy that
bias correction method could able to improve the result for all
CCAM models where Pbias values are getting reduced (from
−0.05–0.2 to −0.05–0.05). Over CPHR, all the CCAM model
simulation for Tmax are in good agreement with IMD. The bias
correction method VS are performing better than DM with
IMD Tmax although bias correction is desirable for CCAM
models for this region. The REMO is overestimating the
Tmax as compared with the observation, and the efficiency of
the model is enhancing after the application of the bias

Fig. 8 Taylor diagram showing the spatial correlation, centered RMS
difference, and standard deviation of RCMs’ simulated raw and bias-
corrected (VS and DM) seasonal maximum temperature with respect to

the observations (IMD and CRU) for summer monsoon season over dif-
ferent agro-climatic zones of India
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correction for CPHR. OverWPHR, CCAM (ACCESS) model
is showing the highest correlation (0.92) with CRU data with-
out bias correction. After bias correction (DM), the Tmax of
REMOmodel become closer to the CRU observation data and
showing the CC of 0.9. The rest of the RCM simulations do
not hold good over WHPR either with IMD or CRU datasets.
The RCM performance over SHPR is different than other
plateau regions. Models without bias correction method show
the highest correlation (0.8–0.85) with CRU dataset. Model
correlation with the IMD’s Tmax data is not good over WPHR
which is in the range of 0.3–0.4. Both methods of the bias
correction have been applied on the RCM simulation; howev-
er, the improvement is not satisfactory. Therefore, the highest
Pbias and low correlation have been observed in all RCM sim-
ulation after bias correction. So, it could be said that the per-
formance of bias correction method also varied spatio-
temporally over a region.

3.2.6 Performance over east coast, west coast, and Gujarat
Plains Hills region

The RCM Tmax simulation over Eastern coast is better than
western coast Plains Hills region. Most of the RCMs are
showing CC in the range of 0.4–0.7 with both the observation
over ECPHR (Fig. 8), after the bias correction (DM) with
IMD data providing best Tmax correlation, i.e., 0.96 for the
REMO model over ECPHR. The REMO shows that Pbias
ranges between 0.05 and − 0.4 and − 0.1 and − 0.5, respec-
tively, for IMD and CRU observations (Figs. 6 and 7). All the
CCAM models’ skill has been notably improved after bias
corrections, and bias-corrected Tmax shows Pbias and CC
values in the range of 0.05–0.3 and 0.8–0.9 against IMD’s
Tmax, respectively. It is perceived that bias-corrected Tmax

could able to reduce the Pbias for both the IMD and CRU as
reference. The Pbias values for bias-corrected Tmax are in the
range of −0.05 to 0.1 against IMD and 0.05–0.3 against CRU.
So, bias-corrected RCMs are providing the better result for
IMD Tmax than CRU dataset for this region. The spatial anal-
ysis of Pbias depicts that both bias correction methods (VS and
DM) are deteriorating the result with CRU Tmax.

All the CCAM models along with the REMOs’ Tmax are
evaluated over the WCPHR for the study period. A keen ob-
servation from the Taylor diagram and spatial Pbias plot with
respect to the IMD and CRU data set signifies that none of the
bias correction method is helpful in the enhancing of the model
performance in representing Tmax over this particular region. It
is indeed a troubling fact that CC values have been reduced in
the bias-corrected Tmax (0.1–0.3) as compared with the raw
model Tmax (0.4–0.55) for all the RCMs with respect to CRU
and IMD. The minimum Pbias value is observed in the raw
CCAM (ACCESS) against the CRU. However, over GPHR,
simulated Tmax is underestimated compared with both the ob-
servational datasets. RCM simulations without bias correction

were closer to IMD than CRU; however, bias-corrected RCMs
gives better result with CRU. Over GPHR, all the bias-
corrected RCMs were underestimating the Tmax compared with
IMD observation. Uncorrected or raw CCAM (ACCESS) is
performing better when IMD is considered as a reference, while
bias-corrected CCAM (CCSM) and CCAM (CNRM) are
performing better when CRU is considered as a reference.

The spatial distribution of Tmax of seven RCM output and
application of two univarate bias correctionmethods, i.e., non-
linear VS and distribution-based DM method, have been pro-
posed to study and evaluate their performance over India and
its different ACZs during 1981–2005. The studies prove that
the original RCM output is biased in nature with respect to the
observation. The validation statistics of raw RCM output
highlights the need of bias correction as the performance of
RCM Tmax simulation varies region to region. The applicabil-
ity on the bias correction methods successfully enhances the
performance of all the RCMs in terms of spatial correlation,
SD, Pbias, and MAE. Over the different ACZs, the perfor-
mance of RCMs varies due to complex topography that even-
tually affects the bias correction outputs. Themodel-simulated
results are largely biased over WHR and EHR regions. The
CCAM (CNRM) and CCAM (CCSM) are the best performing
model to simulate Tmax during the Indian monsoon season
over India and its ACZs. The best fittedmodel simulation with
bias correction has been observed over the Indo-Gangetic
Plains, i.e., TGPR, UGPR, MGPR, and UGPR. Over the
WCPHR, all the CCAMmodels are performing quite satisfac-
tory without bias correction but after bias correction, results
are overestimated. Hence, it is obvious that the suitability of
the bias correction methods is also dependent upon the region-
al topographical feature and the RCM selection.

4 Conclusions

The average spatial distribution of Tmax in RCM simulations
show a close agreement to the CRU data rather than IMD,
especially over the central and southern India. The model
simulation shows large bias over the Himalayan region. The
CCAM (CNRM) and CCAM (CCSM) are performing well to
simulate Tmax over different ACZs during the Indian monsoon
season. The systematic bias correction in RCM simulation
using DM method is showing more robust than the VS meth-
od. Over Indo-Gangetic Plain, i.e., TGPR, UGPR, MGPR,
and UGPR, the bias-corrected Tmax is showing best fitted with
the observation. In contrary, the limitation in bias correction
method is observed over WCPHR region, where all the
CCAM models are performing quite satisfactory without any
bias correction. Overall, the RCM performance varies with the
changes of the study area. The possible reasons for spatially
varying skill of RCMs are owing to the climate conditions and
topographic features of different regions. To estimate climate
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change effects over India, it is necessary to evaluate the per-
formance of different climate models and applicability of dif-
ferent bias correction methods over different zones before
application. It will be interesting to evaluate different physical
phenomenon based on the mathematical approach underlying
on a climate model. Based on this effort, one can analyze the
model performance using suitable basic criterion (physical
and mathematical) for a particular topography, climate condi-
tion, and different interactions of atmosphere to choose suit-
able model for a particular zone.
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