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Abstract
Hyperspectral acquisition provides the spectral response in narrow and continuous spectral 
channel. The high number of contiguous bands in hyperspectral remote sensing provides 
significant improvements in assessing subtle changes as compared to the multispectral 
satellite datasets in context of spectral resolution. Therefore, the main goal of the present 
research is to evaluate the sensitivity of the artificial neural networks (ANNs) for chlo-
rophyll prediction in the winter wheat crop using different hyperspectral spectral indices. 
For evaluating relative variable significance in the study, the Olden’s function has been 
applied. The Lek’s profile method is used for sensitivity analysis of ANNs for chlorophyll 
prediction using the vegetation indices such as Red Edge Inflection Point (REIP), Nor-
malized Difference Vegetation Index (NDVI), Soil-Adjusted Vegetation Index (SAVI), and 
Structure-Insensitive Pigment Index (SIPI) derived from hyperspectral radiometer. The 
analysis indicates a high sensitivity of SAVI followed by NDVI, REIP and SIPI for chloro-
phyll retrieval using ANNs. The statistical performance indices obtained from calibration 
(RMSE = 0.27; index of agreement = 0.96) and validation (RMSE = 0.66; index of agree-
ment = 0.83) suggested that the ANN model is appropriate for chlorophyll prediction with 
good efficiency. The outcome of this work can be used by upcoming hyperspectral mis-
sions such as Airborne Visible Infrared Imaging Spectrometer-Next Generation (AVIRIS-
NG) and Hyperspectral Infrared Imager (HyspIRI) for large-scale estimation of chlorophyll 
and could help in the real-time monitoring of crop health status.

Keywords Hyperspectral Radiometry · Vegetation indices · Sensitivity analysis · Neural 
network · Chlorophyll

1 Introduction

Hyperspectral remote sensing (HRS) technologies provide detailed spatio-spectral infor-
mation simultaneously about the feature objects in a single pixel of an image (Ben-Dor 
et al. 2013). The narrow spectral bands of HRS has advantages as it can provide desired 
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wavelengths of the spectral range, which is not possible with multispectral bands. (Lamine 
et al. 2018; Singh et al. 2017). It has provided the techniques to capture information on a 
spatial rather than the pixel basis to signify the spectral information of the target features 
in narrow and continuous bands (Pandey et al. 2018). Thus, HRS has potential to enhance 
similar target features discrimination as compared to multispectral images with significant 
improvements in the results (Blackburn 1998; Petropoulos et al. 2015). HRS technologies 
can provide promising outcomes in crop types identification, stage growth and associated 
phenological changes (Cho et al. 2007). Due to narrow band and spatio-spectral methods of 
data acquisition, HRS has profound applications in several research domains (Malhi et al. 
2020; Lamine et al. 2019; Anand et al. 2020). In agricultural domains, HRS is being used 
to estimate irrigational water demand (Smith 1992), biophysical parameters (Goel et  al. 
2003), yield prediction (Quarmby et al. 1993), Evapotranspiration (Asrar et al. 1984), as 
well as for disease and pest management (CÁrcamo and Spence 1994). The use of hyper-
spectral indices can further enhance the accuracy of the vegetation parameter estimation 
(Ortenberg et al. 2011; Thenkabail et al. 2000). This characteristics of HRS have advan-
tages in developing indices to measure variable nutrient rate and crop growth analysis over 
other sensors (Blackburn 2006; Wei et al. 2008; Gupta et al. 2014).

After the development of sophisticated artificial intelligence (AI) techniques such as 
ANNs (Bharose et al. 2013; Srivastava et al. 2013), incorporation of hyperspectral remotely 
sensed datasets has enhanced the outcome probability for prediction of plant biochemi-
cal properties (Gupta et  al. 2014; Mulla 2013). ANNs are considered as one of the pre-
cise and robust mathematical tools that were successfully incorporated in several remote 
sensing (RS) research domains for modelling problems analysis (Kisi and Shiri 2011; Wu 
and Chau 2011; Wu et  al. 2010). ANNs have potential for accepting the challenges that 
are complex in nature such as pattern recognition (Petropoulos et al. 2012a, b) prediction 
and biological variables modelling for environmental aspects (Nagy et  al. 2002; Schaap 
et al. 1998; Specht 1991). The principal drawback with the ANNs is that they are “black 
box” because of little explanatory perception of the independent variables used inside the 
prediction method (Olden and Jackson 2002; Tzeng and Ma 2005). In 2003, Gevrey et al. 
(2003) resolved this issue with a comprehensive correlation of different procedures for 
evaluating the variable significance in neural systems.

The model recognition step involves estimation of a suitable parameter set and the 
actual adjustment in the structure of the model (Gupta et al. 2006; Srivastava et al. 2014). 
Factors of each model and structure need adjustment until acceptable levels of agreement 
are obtained (Wagener et al. 2003). Sensitivity analysis (or SA) is to identify the most and/
or least important parameters in explaining variances in the model output (Saltelli et  al. 
2004; Petropoulos and Srivastava 2016). It is evident that the method used to quantify the 
sensitivity of the model will also affect the outcome of the SA (Saltelli et al. 2008). Con-
ventionally, in few RS studies, the local SA is commonly used to understand the input data 
and model structure (Saltelli et al. 2008). In local SA, a base case is taken for all model 
simulations in which all the parameters are set as predefined variable and then each param-
eter in turn perturbed by some specific level of variations (Gustafson et al. 1996; Saltelli 
et al. 2000). In general, in remote sensing-related SA, the calculated sum of squared dif-
ference between the base case and each perturbation is used as a measure to find the rela-
tive significance of each model parameters (Barton and North 2001). However, nowadays, 
researchers uses global SA or GSA to calibrate model parameters in remote sensing (Ver-
relst et al. 2015). The advantage of GSA is that in this all the model parameters vary simul-
taneously and therefore it is more useful for rigorous data analysis and model calibration 
(Ireland et al. 2015; Petropoulos et al. 2014).
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Spectroradiometer is used in many applications, including in characterization of natural 
materials and vegetation analysis. During the last two decades, technological advances in 
hyperspectral Earth Observation (EO) technology in particular have been widely incorpo-
rated into vegetation studies (Goel et al. 2003; Thenkabail et al. 2000; Pandey et al. 2014, 
2019; Anand et al. 2020), providing such estimates at different scales of observation in a 
rapid and cost-effective ways. Therefore, this research work has been carried out to study 
the sensitivity of ANNs for chlorophyll retrieval using hyperspectral datasets. The studies 
involve extensive fieldwork and subsequent laboratory analysis of crop samples, together 
with the advanced techniques integrated with sensitivity analysis to explore the detection 
of the spectral variability responses for total chlorophyll (T_Chl). The paper has the follow-
ing structure—Sect. 2 provides a quick overview of the study area, remotely sensed data-
sets, ANN structure and SA methods. Section 3 demonstrates research outcomes, results 
and discussion, while Sect. 4 focuses on final remarks and conclusions of the present study.

2  Materials and methods

2.1  Study area

The study site is located in the croplands of Saliyar village, Roorkee, (29° 51′ 0″ N latitude 
and 77° 53′ 0″ E longitude), categorized under humid subtropical climatic zone of India. 
Study region has three distinct crop seasons such as zaid (April–May) prevalent during 
summer season, kharif (June–September) during rainy season and rabi crop sown in winter 
season (October–March). The area receives an average annual rainfall of 1074 mm. Most 
of the rainfall received during kharif (84%) and rabi seasons (16%). Distribution is highly 
variable with high precipitation in northern part than the rest of the areas. Both high and 
low landforms are found in the surrounding, e.g. an elevation of 232 m was recorded in 
south, while high elevation of about 869 m was found in the north having the Shiwalik 
ranges. Main source of fresh water is through River Ganga, which is perennial river. It is 
most important district from the agriculture point of view and having all the fertile land for 
cultivation of crops. Soil is highly weathered with reddish-yellow colour, acidic in nature, 
having a clay-rich B horizon. In soil taxonomy, it comes under the category Ultisols. The 
location of the study site is shown in Fig. 1.

2.2  Canopy spectral and chlorophyll measurements

In this experiment, plots of size 4 × 4 square meter were designed and planted with the win-
ter wheat crop. Vegetation radiance measurements were taken for each plot with ASD Field 
Spec Pro radio-spectrometer (Analytical Spectral instrument, Boulder, Co., USA). ASD 
has an in-built 25° instant discipline of view fibre optics, operated at 350–1050 nm spectral 
range having an interval of 1.5 nm for sampling.

The measurements comprises of  60 hyperspectral reflectance datasets with the esti-
mation of Tot_Chl in the both manure-treated and controlled site of winter wheat crops. 
Before measurement of each reflectance, the radiance of a white standard board covered 
with  BaSO4 with prior known reflectivity was noted down for standardization purposes. 
The spectral properties of canopy were measured at a height around 1 m at nadir under-
neath cloudless/near cloudless conditions during 10:00–14:00 in the daytime. The finding 
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set-up affirmed that the proportion of direct to diffuse solar radiation was steady during 
measurements.

Around 0.5  g of a crisp leaf with the aid of quartz sand was crushed until the point 
when no green shading was left in the crucible  with acetone. Later,  (CH3)2CO (acetone) 
was blended in it to a volume of 50 ml and centrifuged at the speed for 30 min in order to 
separate the liquids from the solids. Every chlorophyll pigment has a particular absorption 
value. The trichromatic equation (calculation of different wavelengths at specific absorp-
tion point) has been utilized to locate the relative contribution of each pigment with refer-
ence to chlorophyll content. After centrifugation, a laboratory spectrophotometer (Hitachi 
Model) was used to measure the chlorophyll content  at  663 nm for  chlorophyll-a and 
645 nm for chlorophyll-b (Arnon 1949). The following equation (Eq. 1) was used for the 
T_Chl (mg/l) estimation in the laboratory:

Afterwards, REIP for vegetation health, NDVI as an interpreter of vegetation green-
ness, SAVI as an indicative of soil-based indices and SIPI as a specific of chlorophyll-
based indices were calculated from reflectance obtained from spectroradiometer. The 
calculation of REIP needs four-point interpolation technique. Studies by Clevers et al. 
(2002) indicated that the linear approach is computationally intense and powerful. It 
is the most useful method for the calculating REIP values from the hyperspectral data. 
This computation requires normally a simple interpolation, and only four channels of 
hyperspectral reflectance are needed. The specified four bands of wavelength are centred 

(1)T_Chl (mg∕L) = 20.2A645 + 8.02A663

Fig. 1  Layout of the study area
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at 670, 700, 740 and 780 nm. The reflectance estimations at 670 nm and 780 nm are 
used to find the inflection point (as illustrated in Eq. 2) and for the prediction of inflec-
tion point wavelength (Eq. 3). Thereafter, a linear interpolation procedure is used here 
as given by Kumar et al. (2002).

In 1988, Becker and Choudhury found spectral indices based on red and infra-red 
bands, sensitive to chlorophyll absorption (Becker and Choudhury 1988). Since then, 
NDVI has been broadly utilized among  RS  community for vegetation discrimination 
based on red and infra-red reflectance properties. It indicates that the health status of the 
crop and is measured by the following equation (Tucker 1979). 

Ratio-based Vegetation Indices (VIs) are broadly preferred over soil-based indices 
(Broge and Mortensen 2002). Huete in (1988) proposed an index named as SAVI espe-
cially to minimize the soil background effect on the vegetation signature by including 
a constant soil adjustment factor (L) (Eq.  5). The authors demonstrated that NDVI is 
equal to SAVI when L corresponds to 0.

where RNIR = near-infra-red reflectance, Rred = red reflectance, and L = soil adjustment fac-
tor (0–1).

In 1995, Penuelas et  al. (1995) proposed new spectral indices named as SIPI to 
assess the leaf pigments using remotely sensed datasets. It utilizes the proportions of 
reflectance at 800, 445 and 680 nm, precisely to discover the proportions of carotenoids 
to Chl-a that generally reduces radiation effects at the leaf level and can be represented 
as follows (Eq. 6):

2.3  Artificial neural networks

To facilitate chlorophyll retrieval using ANNs, a traditional multilayered neural net-
work was employed as shown in (Fig. 2). The connection among each input-to-node as 
well as node-to-node requires being modified by a weight in the network. This assemble 
contains an additional input in particular node. Each node is thought to have one as a 
constant value. Since one or more than one hidden layer is contained by a multilay-
ered neural network, the biases and weights were initialized to the appropriately scaled 
values, before starting the training process. In 1990, Aleksander and Morton proposed 
that the output layer (Oa) can be calculated using linear activation function as shown in 
Eq. 7 (Aleksander and Morton 1990). 

(2)RREP = (R670 + R780)
/
2

(3)�REP = �700 + (�740 − �700) ×

[
RREP − R700

R740 − R700

]

(4)NDVI = (RNIR − Rred)∕(RNIR + Rred)

(5)SAVI = ((L + 1)(RNIR − Rred))∕(RNIR + Rred + L)

(6)SIPI = (R800 − R445)∕(R800 + R680)
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where hhidden(x) =
1

1+e−x
 , P = node numbers, wa,p = the weight, ia,p = an input to node a 

from network input p, Oa = the current hidden layer node a output, and bais the bias (Alek-
sander and Morton 1990).

The sigmoid activation function is used with ANNs. In Eq. 7, hidden(x) is the sigmoid 
activation function. Normalization of the training data is essential to avoid saturating the 
activation function, which was performed mainly to limit the ranges at − 1 to 1. The shape 
of this function plays an important role in ANNs learning. The following normalization 
equation was used (Zhang et al. 1998):

where Znorm = normalized value; z0 = original value;z = mean; Zmax = maximum value; and 
 Zmin = minimum value.

This network architecture consists of hidden, input and output layers, one or more 
neurons containing with each layer also the hidden and output layers connected with 
bias neurons. The present study illustrates a method sufficient to describe the classic 
family of 10-hidden-layer, four-input-layer and one-output-layer (4-10-1) neural net-
work trained by the back-propagation algorithm (Rumelhart et al. 1986). These neural 

(7)Oa = hhidden

(
P∑

p=1

ia,pwa,p + ba

)

(8)znorm =
zo − z

zmax − zmin

Fig. 2  Schematic representation neural network employed in this study, where REIP Red Edge Inflection 
Point, NDVI Normalized Difference Vegetation Index, SAVI Soil-Adjusted Vegetation Index, SIPI Struc-
ture-Insensitive Pigment Index, and Chl total chlorophyll concentration. H represents hidden layer, B1 and 
B2 represent bias neurons, I represent input payers, and O represents the output layers
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networks are proposed to be a global predictor of every unremitting function (Hornik 
et  al. 1989) and therefore can be incorporated in the research related to ecological 
studies.

2.4  Sensitivity analysis framework

SA is executed to analyse the relative significance of informative variables (Petropou-
los and Srivastava 2016). It helps in explaining the relationship between informative 
and response or reactive variable by the model. Conversely, sensitivity analysis does 
not provide the categorical description of a relationship between variable but prefer-
ably allows its users to predict the nature of the association between variables. We may 
assume that the linkage between a reaction and illustrative variable may vary, provided 
the setting of another informative factors (i.e. a cooperation might be available). More 
or less sensitivity examination can provide these data.

In this study, the Lek’s profile method is employed for sensitivity analysis. In 1996, 
the “Lek-profile method” Sovan Lek et  al. (1996) was formulated, which was later 
explained in detail by Gevrey et al. (2003). This method produces profile (or contribu-
tion) plots of each output variable with respect to a range of one input variable wherein 
the rest of input variables are kept constant at their 0th, 20th, 40th, 60th, 80th and 100th 
percentiles. Subsequently, this method repeats the above-mentioned processes for each 
input variable. As a result, it generates response curves according to the change of the 
input variables (Gevrey et al. 2003). Figure 3 illustrates information regarding range of 
input and output variables along with the five different percentile values. For statistical 
model, utilizing various response factors identified with different explanatory factors, 
the user picks one of the two variables to simulate  the responses of factors over the 
scope of qualities set for the explanatory variable.

Fig. 3  Explanatory schema of the Lek’s profile method employed in the present study
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2.5  Performance evaluation

In this study, we compared the SA-ANNs simulated results with the Total Chlorophyll (T_
Chl). The performances between the two methods are evaluated regarding the agreement 
index and RMSE. The ratio of the potential error and mean square error represents the 
index of agreement (Willmott et al. 1985) and is defined as mentioned below (Eq. 9):

where n = observation numbers; xi = station measured data and yi = modelled data; and 
x = mean of station measured data (Willmott et al. 1985).

The RMSE can be expressed as shown below (Eq. 10): 

3  Results and discussion

3.1  Evaluation of input dataset

To estimate the distribution of REIP, NDVI, SAPI, SIPI and T_Chl, the box and whisker 
plot is utilized, which is clear, definite and simple to peruse the data as illustrated in Fig. 4. 
In box and whisker plot, the line indicates the median value across the box, the whiskers by 
the highest degree and the box is enclosed by the quartiles. The long whiskers within the 
container (box) plot suggest that the implicit distribution is skewed towards excessive esti-
mates and vice versa for least whiskers. Box plots with a massive spread show high vari-
ations in the datasets. The plot illustrates lower inter-quartile range for NDVI and SAVI. 

(9)d = 1 −

∑n

i=1
(xi − yi)

2

∑n

i=1

���yi − x�� + ��xi − x��
�2

(10)RMSE =

√√√
√

(
1

n

n∑

i=1

[
yi − xi

]2
)

Fig. 4  Box and whisker plot of 
T_Chl, REIP, NDVI, SAVI and 
SIPI, showing mean, quartile, 
minimum, maximum and median 
values of the vegetation indices
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REIP represents the highest inter-quartile ranges followed by T_Chl. The maximum fre-
quent values were skewed in the direction of lower median values in almost all the cases. 
In a case of NDVI and REIP, a high spread was obtained followed by T_Chl, SAVI and 
SIPI. Except NDVI, for all other cases profoundly high values for minimum and maximum 
values were found in the dataset. The numbers of outliers were found higher in the case of 
NDVI as compared to other parameters, which indicates some data points were not follow-
ing the normal trend of the datasets. This shows that the high NDVI values conditions are 
may be due to hydrogen intensification in the soil by microbial activities.

The performance of various methods in the terms of correlations can be represented 
by scatter matrix plot as shown in Fig. 5. In the plots, the correlation between T_Chl 
and REIP [both r (0.87) and rs (0.82) values] revealed comparable performances, while 
between T_Chl and NDVI a linear relationship can be seen with r and rs values of 0.84 
and 0.73  respectively. The T_Chl showed a negative correlation with SIPI with r = − 
0.86 and rs = − 0.82. However, T_Chl showed a strong correlation with SAVI with 
r = 0.94 and rs = 0.92. REIP showed a linear relationship with SAVI (r = 0.78, rs = 0.73) 
and NDVI (r = 0.81, rs = 0.72) but a negative relationship with SIPI with r = − 0.8 and 

Fig. 5  Pearson and Spearman correlation matrix plot illustrating the relationship among factors (T_Chl, 
REIP, NDVI, SAVI and SIPI) (where p represents the relationship significance in terms of probability lev-
els)
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rs = − 0.73. SAVI showed a weak correlation with NDVI (r = 0.72, rs = 0.0016) and a 
negative trend with SIPI (r = − 0.83, rs = − 0.84). NDVI and SIPI also showed a nega-
tive relation with r = − 0.88 and rs = − 0.84.

3.2  Evaluation of variable importance

For evaluating the variable importance, the Olden function is a more flexible and robust 
method. This function distinguishes the relative significance of descriptive variable 
for a solitary reaction variable by considering the model weights. In the network, all 
weighted links between the layers can be used to determine each variable’s importance. 
All the weight response variables were recognized and pass through the hidden layer. 
This is recurring process for all the other descriptive variables. This process is repeated 
continuously until specific input variable is obtained from a list of weights. The connec-
tions for every input node are scaled relative to all other inputs that are tallied. In the 
model, single value describes the relationship with the response variable. This single 
value is obtained for each descriptive variable. For quantification of variable contribu-
tions, the product of the input-hidden and  hidden-output connection weights between 
each input/output neurons are summed  across all  hidden neurons. The importance of 
this method maintains the relative contribution of each connection in both terms as the 
sign and as the magnitude. The other advantage of the Olden’s algorithm that it is pro-
ficient for evaluating neural network with response variable and multiple hidden lay-
ers. Each variable is assigned the importance value in units. Each assigned variable is 
directly based on the product summation of the connection weight parameters. Based 
on a magnitude and relative sign between explanatory variable, the actual value can be 
interpreted.

Independent parameters such as NDVI, SIPI, SAVI and REIP were considered for 
their importance in T_Chl prediction using Olden’s method. To assess the sensitivity, 
each of the measured variables was assessed for its utility for T_Chl prediction. The 
analysis demonstrated that for T_Chl prediction, the most sensitive parameters is SAVI 
followed by NDVI and REIP, while least sensitivity can be detected in case of SIPI (as 
illustrated in Fig. 6).

Fig. 6  Variable importance 
estimation using Olden’s method 
for all the vegetation indices 
employed in this study
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3.3  Sensitivity analysis of input variables using Lek’s profile method

The SA method was proposed by Lek et al. (1995, 1996). The principle of Lek profile 
algorithm is to create an unreal matrix be relevant to the range of all input variables. 
The generated matrix consists of explanatory variables values where rows symbolize 
observations numbers and columns represent explanatory variables. This data frame or 
matrix is used to anticipate the value of response variable through fitted object model. 
The variable of this data frame or matrix is divided into several intervals between mini-
mum values and maximum values. These intervals are called scale. The value of interval 
from maximum to minimum show median, third quartile and maximum. For the study 
of this variable, value for each of the scale point is required. After that, the profile of the 
outcome variable can be plotted and the same process or calculation are provided  for 
the other variables. A curve is obtained for each variable, then according to the input 
variable, it gives a set of profiles of the variables. This gives a final product that is a set 
of response curves. The calculation of relative significance for respective input varia-
bles is illustrated by the magnitude of its range to predict response value, i.e. maximum 
to minimum. This process is called “profile” method by Gevrey et  al. (2003)  and the 
plots display the bivariate nature in one explanatory variable and one response variable. 
The several lines in plots show the relationship variation, and the explanatory variable 
held constant to  their minimum 20th, 40th, 60th, 80th and the maximum quartile val-
ues. Influence of four independent environment variables on T_Chl in the ANNs can 
be illustrated by the six curves (as shown in Fig. 7). After the evaluation of each inde-
pendent parameter—NDVI, SIPI, SAVI and REIP, the T_Chl is predicted. The concen-
tration of T_Chl is the minimum at the low value of the independent variable, and then, 
it enhances very rapidly to reach the maximum level in the case of SAVI, which demon-
strated that for T_Chl prediction, SAVI, NDVI and REIP are the most sensitive param-
eters as compared to SIPI.

Fig. 7  Lek’s "profile" method for sensitivity analysis of ANNs with the input variables NDVI, SIPI, SAVI 
and REIP for T_Chl prediction
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The scatter plots during calibration and validation of ANN are shown in Fig. 8. For pre-
diction of T_Chl using ANNs, the size of network and decay functions for an optimal per-
formance were obtained as 10 and 0.1, respectively. The goodness of fit of measured and 
simulated total chlorophyll is represented using the RMSE and index of agreement. The 
statistical performance indices were obtained as (RMSE = 0.27; index of agreement = 0.96) 
during the calibration and validation (RMSE = 0.66; index of agreement = 0.83), suggest-
ing that the model is appropriate for chlorophyll prediction with high efficiency and thus 
can be used for chlorophyll estimation. Similar results of high ANN performance were also 
obtained by Suo et al. (2010), in which the authors used ANN for chlorophyll prediction in 
cotton plant. Results obtained through their method were in sound agreement with those 
obtained in the laboratory. In study by Broge and Mortensen (2002), it was shown that 
vegetation indices are needed for canopy leaf chlorophyll content of winter wheat crops, as 
they reduce spectral effects caused by external factors such as the atmosphere and the soil 
background. In research by Tian et al. (2017), traditional ANN model for chlorophyll pre-
diction was presented. They showed that proper optimization of ANN is needed for chlo-
rophyll estimation, and they concluded that the optimized ANN is showing better results 
than traditional one. Further, in order to reduce the dimensionality, the PCA method was 
utilized by Zhou et  al. (2015) with hyperspectral datasets. Their results showed that the 
PCA, when combined with ANN model, can improve the accuracy. In overall, the results 
produced by this paper are in agreement with the studies as mentioned above.

4  Conclusion

The study evaluated the ANNs for chlorophyll prediction by providing appropriate SA for 
the indices developed using the hyperspectral datasets. For the first time, the Lek’s pro-
file method has been used for T_Chl prediction. The Lek’s profile method not only classi-
fies the input variables by evaluating relative importance but also defines how these inputs 
contribute to the results. The techniques adopted in the present research illustrate that the 
maximum information of plant biochemical variables, i.e. T_Chl content, can be obtained 

Fig. 8  Scatter plot of observed and simulated total chlorophyll during a) calibration and b) validation
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using the hyperspectral radiometer datasets. The hyperspectral radiometer measurements 
were then used for the generation of indices like NDVI, REIP, SAVI and SIPI. The results 
obtained from Lek’s profile method revealed that the SIPI is the least sensitive parameter 
for T_Chl as compared to the other indices—SAVI, NDVI and REIP. SAVI was found to 
be the most sensitive parameter for T_Chl and should be carefully estimated from radiom-
eter datasets. The SA-ANN approach provided through this work can be used as an effec-
tive method for chlorophyll estimation from hyperspectral sensor and therefore reduce our 
dependency on destructive techniques. The method is useful for an effective crop manage-
ment and forecasting as well as significant in providing quality control information to esti-
mate uncertainty and their associated assumptions. This research work can be implemented 
to estimate the biochemical parameters in conjunction with the upcoming missions such 
as Airborne Visible Infrared Imaging Spectrometer-Next Generation (AVIRIS-NG) and 
Hyperspectral Infrared Imager (HyspIRI). In future, vegetation indices that include water 
content, leaf structure and others will be incorporated for T_Chl prediction. Additionally, 
in future, attempts will be made to evaluate the sensitivity of other artificial intelligence 
techniques like support vector machines and relevance vector machines for crop biochemi-
cal parameters estimation.
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