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Abstract: Forest degradation is considered to be one of the major threats to forests over the globe,
which has considerably increased in recent decades. Forests are gradually getting fragmented and
facing biodiversity losses because of climate change and anthropogenic activities. Future prediction
of forest degradation spatiotemporal dynamics and fragmentation is imperative for generating a
framework that can aid in prioritizing forest conservation and sustainable management practices.
In this study, a random forest algorithm was developed and applied to a series of Landsat images
of 1998, 2008, and 2018, to delineate spatiotemporal forest cover status in the sanctuary, along with
the predictive model viz. the Cellular Automata Markov Chain for simulating a 2028 forest cover
scenario in Shoolpaneshwar Wildlife Sanctuary (SWS), Gujarat, India. The model’s predicting
ability was assessed using a series of accuracy indices. Moreover, spatial pattern analysis—with the
use of FRAGSTATS 4.2 software—was applied to the generated and predicted forest cover classes,
to determine forest fragmentation in SWS. Change detection analysis showed an overall decrease
in dense forest and a subsequent increase in the open and degraded forests. Several fragmentation
metrics were quantified at patch, class, and landscape level, which showed trends reflecting a decrease
in fragmentation in forest areas of SWS for the period 1998 to 2028. The improvement in SWS can be
attributed to the enhanced forest management activities led by the government, for the protection
and conservation of the sanctuary. To our knowledge, the present study is one of the few focusing on
exploring and demonstrating the added value of the synergistic use of the Cellular Automata Markov
Chain Model Coupled with Fragmentation Statistics in forest degradation analysis and prediction.

Keywords: forest degradation; fragmentation statistics; Land cover prediction; remote sensing;
CA-Markov; FRAGSTATS

1. Introduction

Significant growth in human disturbances has increased pressure on the forests worldwide,
more particularly on the tropical forests, which is causing progressive dissection and degradation of
forest area [1,2]. Such progressive dissection of massive intact forest extensions into a set of small,
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geometrically altered, and isolated patches is referred to as forest fragmentation [3–5]. Anthropogenic
fragmentation of natural forests is the major factor affecting spatial distribution of biodiversity [6–9],
climate change, and impairing forest ecosystem services [10,11]. It also impacts the species composition,
abundance, and natural regeneration [12,13]. Predicting future spatiotemporal forest scenario of forest
degradation and fragmentation is an indispensable need for developing a framework that can help in
prioritizing forest conservation aimed at monitoring forest biodiversity loss [14], mitigating climate
change [15], and gradually improving ecosystem services [14–19]. As highlighted by [18], forest
fragmentation is the result of patch conversion, leaving the forest geography in stands of varying size
and degree of isolation, whereas [19] discussed the impact of isolated forest fragments on different
tree species.

Remote sensing is the most reliable and powerful approach for delineating past and present forest
dynamics, both at a spatial and temporal scale [20]. It is capable of delivering information on forest
cover of an area in cost and time effective means, and an output can be procured in form of forest cover
maps [21]. Several geospatial and mathematical classification techniques can be used to delineate
spatiotemporal variations in forest dynamics, such as maximum likelihood [22], neural network [23],
logistic regression [24], and Support Vector Machines [25]. Several researchers also used certain hybrid
models combining several models to delineate and predict land use or forest cover [26,27]. Random
forest classifier [28] is one such algorithm, which due to its simplicity, speed, and accuracy is very
popular [29–31]. It is a supervised machine-learning classification technique that uses multiple decision
trees for classification as well as a dataset regression. It uses an ensemble learning method that uses
multiple learning algorithms like decision tree classifiers, bagging, and bootstrapping to achieve
more accurate results [32]. It has an ability to classify large datasets since it considers dimensionality
reduction procedures and also handles missing and outlier values [33]. This classifier’s performance
is comparable to that of other classifiers like Support Vector Machine and is better than many other
classifiers like Maximum Likelihood Classifier [34] and Artificial Neural Network [35,36].

The classified output of the remote sensing images can be used with predictive models such
as the Cellular Automata (CA) [37] and Markov Chain [38], where using multivariate regression
analysis is possible to simulate future scenario of forest cover [39,40]. By itself, the Markov Chain is
not capable of prediction, but the synergetic use of CA and the Markov Chain is capable of providing
information on the spatiotemporal dynamics and future scenarios [41]. These stochastic algorithms
consider the interaction effects of the spatial and temporal dynamics for forecasting future forest cover
changes [42–45] that aid decision making [46,47]. These integrated models are based on the initial
distribution and transition matrix. It follow the assumption that the drivers of the current situation in
an area remain unchanged in the future [48]. Studies are also present wherein remote sensing and GIS
are coupled with CA–Markov model for predicting land use cover of an area [49–51].

For a detailed understanding of forest fragmentation, forest cover maps generated using remote
sensing data are nowadays subjected to spatial pattern analysis, named FRAGSTATS, which measures
fragmentation at different levels, viz. patch, class, and landscape. Patch metrics is defined as the small
homogeneous isolated fragment for every land use classes, whereas the class metrics is defined as
the cumulative patch distribution for each land use class and the landscape is the cumulative class
distribution showing the overall fragmentation of a particular region. Patch level studies were taken
up by many authors [52,53], while many other researchers monitored forest fragmentation at the
class level [54,55]. Landscape level transformation for mapping land cover dynamics was also been
demonstrated by many authors [56–59]. Partial information on fragmentation is retrieved when a
study is restricted to a single level. For a comprehensive analysis of forest fragmentation, computation
of metrics at all three levels; patch, class, and landscape, becomes essential.

The present work aims at performing a spatiotemporal assessment of forest fragmentation and
degradation analysis in the Shoolpaneshwar Wildlife Sanctuary of Gujarat State, India, using Landsat
data for the year 1998, 2008, and 2018, using different fragmentation indices generated at the patch,
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class, and landscape levels. Further, it also attempts to predict forest fragmentation scenario for the
year 2028, using state of the art Cellular Automata Markov Chain model.

2. Materials and Methods

2.1. Study Area

The study area selected is the Shoolpaneshwar Wildlife Sanctuary (SWS), a protected forest area
located in the Western Satpura Range south of the Narmada River, Narmada District, Gujarat State,
India (Figure 1). The sanctuary was established in the year 1989 and covers 607.71 km2 geographical
area. It extends from 21◦ 03′ N to 21◦ 59′ N latitude to 73◦ 05′ E to 74◦ 10′ E longitude, at an altitude
of 800 to 900 m above Mean Sea Level (MSL) [60]. Two important irrigation projects, namely Sardar
Sarovar and Karjan dams are based in the sanctuary. The study area comprises of mixed dry deciduous
forest, riverine forest, few pockets of moist teak forest, agricultural fields, and two water reservoirs.
SWS is considered to be one of the thickest forest in the state, with naturally protected regions that
support the regional biota [61]. Most of the forest is covered with Tectona grandis L. and Dendrocalamus
strictus [62] and the distribution of mixed species is also high within the forest. Most of the rainfall
in the study area, commences with southwest monsoon in mid-June and extends till mid-October.
The daily average temperature of the area in the summer (March to May) reaches 43 ◦C and reduces
to 10 ◦C in winter (November–February). The SWS region is important for the support of its tribal
population, regional catchment, species diversity and wildlife.
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Figure 1. Map depicting the study area (shown in red color).

2.2. Datasets and Methodology

2.2.1. Satellite Data Acquisition & Pre-Processing

The satellite images with a spatial resolution of 30 m from Landsat 5 TM for the year 1998
and 2008 and from Landsat 8 OLI for the year 2018 were downloaded from Earth Explorer (https:
//earthexplorer.usgs.gov/). To minimize the haziness in the images, the dark pixel subtraction technique
was applied [63,64]. Georeferencing of the images was carried out using UTM projection and WGS 84
datum and nearest neighborhood resampling method. Area under the SWS was extracted using the
subset utility of the ENVI 5.1. These satellite images were used for the preparation of forest cover maps.

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
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2.2.2. Forest Cover Classification

To perform the forest cover classification, a widely used and stable Random Forest classification
algorithm was implemented in the present study. The Random Forest Classifier was applied on the
pre-processed Landsat images of all 3 time intervals. This technique uses bootstrap aggregation to
form an ensemble of classification and induction of tree-like classifiers. The original training sample
was collected and the satellite images were used as the input parameters, the bootstrapped data helped
in avoiding overfitting and generating rapid learning. The random selection of variables within the
classifier also sought to minimize the correlation between the tree and it helped to decrease the error
rates. This made the selection of trees from a set of multiple trees important to achieve a high accuracy
within the acceptable range. The selection was feasibly achieved by optimizing the parameters within
the algorithm, specifically for the classification using satellite images, setting the optimal parameter
was crucial for achieving a better accuracy.

The classification was carried out using a software package in the R language. The data were
trained within the random forest classifier with a multiple number of trees for the six features class.
In total, six classes were established that consisted of three forest cover classes namely Dense forest,
Open forest, and Degraded forest, and three non-forest cover classes namely cropland, bareland,
and waterbody. For classification, the training samples for the different forest and non-forest classes
were collected by visual interpretation of reference satellite and google earth images, and thereafter,
the accuracy assessment was carried out using 30 training samples for each class.

2.2.3. Accuracy Assessment

Accuracy assessment of the classified images for the year 1998, 2008, and 2018 was carried out using
four statistical accuracy measures. These included the overall accuracy, errors of commission (user’s
accuracy), errors of omission (producer’s accuracy), and the Kappa coefficient. A total of 30 random
points for each class were considered for checking the accuracy of the thematic maps produced from
the random forest technique. Ratio of the total correctly classified pixels and the total number of
pixels in the error matrix provided the overall accuracy. Overall accuracy inclined to overestimate
classification accuracy since it did not incorporate the proportion of agreement between datasets [65].
Producer’s accuracy indicates the probability of the reference pixel being correctly classified. User’s
accuracy indicates the probability of the classified pixel of map that actually represents that class on the
ground [63,66]. The Kappa coefficient incorporates the off-diagonal elements as a product of the row
and column of the error matrix. This controls the chance for an agreement by removing the proportion
of agreement that is expected to occur by chance [67,68]. Three temporal classified images of Landsat
were compared to delineate the change in forest cover that would give status of deforestation in the
study area. Temporal forest cover change analysis was subjected to the CA Markov Chain integrated
modeling technique to predict the forest cover scenario for the year 2028.

2.2.4. CA-Markov Chain

In order to predict the forest cover for year 2028, CA Markov Chain was performed using the
IDRISI GIS Analysis software. The CA Markov model is mainly used to simulate the spatial and
temporal changes between two different land covers/forest cover, and it can generate a transitional
matrix to predict future changes [69]. A cellular automata works on the concept of proximity analysis in
which it examines the neighboring pixels, the transitional probability matrix determines the possibility
of a pixel to convert into other class. In the present study, transitional matrix was generated for each
forest cover classes that could be represented by Equation (1):

S(t, t + 1) = Pi j × S(t)S (t, t + 1) = P (1)

where S(t) is system status at time t, S(t + 1) is the system status at time t + 1, Pij is the transitional
probability matrix that is calculated as shown in Equation (2):
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Pi j =

∣∣∣∣∣∣∣∣∣∣∣
P1,1 P1,2 . . . P1,N
P2,1 P2,1 . . . P2,N

. . . . . . . . .
PN,1 PN,2 PN,N

∣∣∣∣∣∣∣∣∣∣∣ (0 ≤ Pi j ≤ 1) (2)

where P is the transitional probability, Pij is the probability of conversion of one classified image of
time i to another classified image of time j, and PN is the probability at particular time for N number of
classes. The transitional probability varied between 0 and 1. The transition was estimated by using
the contiguity filter of 5 × 5 pixels, which was used to define the suitability of the neighboring pixels.
The standard contiguity filter used in the present study is shown in Equation (3).

ContiguityFilter(5× 5) =


0 0 1 0 0
0 1 1 1 0
1 1 1 1 1
0 1 1 1 0
0 0 1 0 0


(3)

In the present study, classified Landsat images from year 1998, 2008, and 2018 are used as input
parameters in the CA Markov chain model to generate a transition probability matrix to further predict
the scenario for 2028. The CA Markov validation was performed using the classified image of 2018
with the predicted 2018 image, in order to evaluate the performance of the model. Four indicators,
kappa for no ability (κno), standard kappa (κstandard), kappa for location (κlocation), and kappa for
location strata (klocationstrata) were derived to find out the accuracy of the prediction results.

2.2.5. Fragmentation Analysis

Quantification of the forest fragmentation was carried out using the Raster version of the
FRAGSTATS spatial pattern analysis software (ver.4.2.1) [70]. The changes in forest cover classes of
the SWS throughout time were delineated at patch, class, and landscape levels. Quantification and
comparison of the spatial configuration of forest fragments were based on the following set of metrics,
selected after going through different forest fragmentation studies [71,72]. These metrics are said to
be sensitive to dissection of forests and hence were used for investigating fragmentation within SWS.
The selected metrics are explained in Table 1.

Table 1. Description of metrics computed in the present study at different levels.

Metric
Unit/

Range
Level of Analysis

Formula Explanation
P C L

Total Area
(TA) ha 4 TA = A(1/10000) Area of each patch or class

or landscape

Mean Area
(AREA) ha 4 AREA = aij(1/10000)

The average size of the patches of
the corresponding forest type.

Smaller mean patch size indicates
more fragmented forest

Core Area
(CORE) ha 4 CORE = ac

i j

(
1

10000

)
It is the area in the patches which is
within the depth of edge distance

from the patch perimeter of the
corresponding forest type.

The core area decreases with the
increase in fragmentation.

No of Patches
(NP) - 4 4 4 ni

It is the total number of patches of
corresponding patch class.

More the patch more will be
the fragmentation.
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Table 1. Cont.

Metric
Unit/

Range
Level of Analysis

Formula Explanation
P C L

Patch Density
(PD)

Patches/100
ha 4 4 PD =(ni/A)*(10000)*(100)

It is simply the total number of
patches per 100 hectares of area.
Higher the patch density higher

will be the fragmentation.

Edge Density
(ED) m/ha 4 ED =

(∑m
k=1 eik/A

)
∗ 10000

It is the sum of edge segment
length of corresponding patch type

divided by the total patch area.
A high ED value represents a

higher degree of fragmentation.
When the whole landscape is
composed of only one patch,

the ED value will approach zero.

Radius of
Gyration

(GYRATE)
≥ 0 4 4 GYRATE =

∑z
k=1 hi jr

It is the mean distance between cell
and the centroid of the patch.
Increase in Gyrate indicates

increase in patch size that indicates
reduction in fragmentation

Perimeter Area
Ratio

(PARA)
>0 4 4 PARA =

Pi j
ai j

It is the ratio of patch perimeter
and area.

Lower the PARA higher will be the
fragmentation and vice versa.

Contiguity
Index (CONTIG) 0–1 4

CONTIG =

[∑n
r=0 Cijr

ai j

]
−1

v−1

It is the spatial interconnections
between neighboring pixels.
It varies from 0 to 1, where 0
indicates single pixel patch

whereas higher value indicates
more patch interconnection.

Higher the CONTIG lower will be
the fragmentation

Interspersion
Juxtaposition

Index (IJI)
% 4 4

IJI =
−

∑m
i=1

∑m
k=i+1[ (

eik
E )∗ln(

eik
E )

∣∣∣]
ln(0.5[m(m−1)]) ∗ 100

IJI defines the interspersion of a
given patch by estimating the
observed interspersion over

maximum possible interspersion.
Lower the interspersion lower will

be the fragmentation.

Proportion of
Like Adjacencies

(PLADJ)
% 4 PLADJ =

(
gi j∑m

k=1 gik

)
(100)

PLADJ calculates the number of
like adjacencies divided by the total
cell adjacencies, it also involves the
focal class. It varies from 0 to 100,
where 0 represents the patch with

maximum disaggregation.
Lower the PLADJ higher will be

the fragmentation.

Aggregation
Index (AI) % 4 4 AI =

[ gii
maxgii

]
(100)

It is the like adjacencies of a
particular class divided by the

maximum possible like adjacencies
of that particular class. It ranges
from 0 to 100, where 0 indicates

more disaggregation. Lower the AI
more is the fragmentation.

Clumpiness
(CLUMPY) −1 to 1 4

CLUMPY =
[

Gi−Pi
1−Pi

]
Where, Gi =

(
gii∑m

n=1 gii−min(ei)

)
It is the proportion of like

adjacencies (Gi) minus proportion
of landscape of focal class.

Lower value of CLUMPY indicates
higher fragmentation whereas

higher value shows
less fragmentation.
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Table 1. Cont.

Metric
Unit/

Range
Level of Analysis

Formula Explanation
P C L

Normalized
Land Shape

Index (NLSI)

0 ≤
NLSI ≤ 1 4 NLSI = ei−minei

maxei−minei

It is the total perimeter of a
corresponding class minus the
minimum observed perimeter

divided by the difference of
maximum and minimum

perimeter of class.
Lower the NLSI value lower will be
the fragmentation and vice versa.

Euclidean
Nearest

Neighbor
(ENN)

m 4 4 ENN =

∑n
j=1 Xi j

ni

It is the sum of all corresponding
patch type divided by the total

number of same patch type.
Lower the ENN value higher will

be the fragmentation and vice versa

Landscape
Shape Index

(LSI)
LSI ≥ 1 4 LSI = ei

minei

It is the total edge length divided
by the minimum possible length of

class edge.
The lowest value 1 shows a very

compact patch that is less
fragmentation whereas higher the

LSI value higher will be
the fragmentation.

where A = total landscape area (m2); aij = area of patch ij; aij
c = core area of patch ij based on specific edge depth

(in meters); ni = total number of patches; m = total edge length; eik = total edge length including landscape boundary
of patch type i; hijr = distance between cell ijr (located within patch ij) and centroid of patch ij; z = total number of
cells in patch ij; Pij = perimeter of patch ij; aij = area of patch ij; cijr = contiguity for pixel r in patch ij; v = sum of
template value; eik = total edge length in landscape between patch I and k; E or ei = total length of edge in landscape;
gii = number of like adjacencies between pixels of patch type i; gik = number of adjacencies between pixels of patch
type i and k; max gii = maximum number of gii; Pi = proportion of the landscape occupied by patch type i; ei = total
length of edge of class i; and minei = minimum total length of edge of class i.

The brief methodology adopted in the present study is depicted in the flow chart (Figure 2) and
the details of it’s implementation are provided below.
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3. Results and Discussion

3.1. Spatiotemporal Forest Cover Classification and Accuracy Assessment

Spatiotemporal forest cover classified images for years 1998, 2008, 2018 were generated using
random forest algorithm. Figure 3 shows the generated forest cover maps. User’s and Producer’s
accuracies along with overall accuracy and kappa coefficient for all 1998, 2008, and 2018 are provided
in Figure 4. User’s accuracy corresponds to the error of commission that was calculated by dividing the
correctly classified pixel by training pixel, the producer’s accuracy corresponds to the error of omission,
which was calculated by dividing the correctly classified pixels to the total number of pixel in particular
class, and the overall accuracy was calculated by dividing the total number of correctly classified
pixels with total reference pixels. Overall accuracy for the forest cover classification was 90.0% for
1998, 96.6% for 2008, and 94.8 % for 2018, and the Kappa coefficient was 88.5%, 95.9%, and 93.8%,
respectively. In terms of producer’s accuracy for 1998, the lowest values of the producer’s accuracy
(70%) and user’s accuracy (77%) corresponded to dense forest. For the classification of 2008 forest cover
map, all classes showed user’s and producer’s accuracies over 89%, exhibiting accurate classification.
In terms of user’s accuracy of 2018 forest cover map, all classes were over 88%, again indicating a good
classification. This indicated the appropriateness of the classified Landsat images for an effective and
reliable change detection analysis and prediction modeling, using the CA-Markov algorithm.ISPRS Int. J. Geo-Inf. 2020, 9, x FOR PEER REVIEW 9 of 20 
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3.2. Forest Cover Modeling Using CA-Markov and Validation

CA-Markov simulated forest cover maps for the year 2018 and 2028 are shown in Figure 3.
Figure 5a provides a summary of the probability matrix for forest cover conversions for all classes in
SWS that occurred between 1998 and 2008. This matrix was used for generating predicted forest cover
map of 2018. Figure 5b shows the transition probability matrix for time period between 2008 and 2018,
which was then used for predicting future forest cover in the year 2028. Validation of the CA-Markov
simulated maps was carried out by comparing predicted forest cover maps of the year 2018 with
the real random forest 2018 classified forest cover map. Statistics of different classes produced using
the predicted 2018 forest cover map and observed forest cover map were comparable (Figure 6b).
This validated the CA-Markov generated forest cover maps, thereby, proving its effectiveness and
exhibiting the predictive power of the model in predicting 2028 scenario of the forest in the SWS.
Very strong predictive tools are generally considered to have accuracies of about 80% [73]. The 80%
Kstandard value verified the accuracy of this model. For testing the overall accuracy of the model, the Kno

value was considered as an effective alternative to Kstandard (Pontius Jr, 2000). Overall performance
of the model in predicting forest cover map was quite satisfactory. This was reflected from its Kno,
which was estimated 81%. The model was also capable of providing a reasonable representation of
location, which was shown by its Klocation value, i.e., 81%. Additionally, visual interpretation of the
results highlighted the effectiveness of the model. After investigating the predictive ability of an
Integrated-Markov Chain change model, it was used to simulate 2028 forest cover map of the SWS.

The probability transition matrices for year 1998–2008 and 2008–2018 are shown in Figure 5,
the probability varied from 0 to 1; represented in the form of circles. The size of the circle represents
the amount of data, i.e., bigger the circle higher the number of data it holds whereas the color
representation shows the class-wise probability transition. The class-wise transition within three
different time period showed an interesting result. When transition of open forest into dense forest
was observed, the transition probability was very low in 1998–2008. Nevertheless, the transition
probability increased significantly between 2008–2018, which showed a positive change with respect
to the ecosystem recovery. In case of transition of degraded forest to bare land, the probability was
very low in 1998–2008 but it drastically increased between 2008–2018, which showed that the overall
transition of SWS between 1998–2018 was mixed with respect to the regional ecosystem.
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3.3. Change Detection Analysis

Area statistics for the random forest classification for the year 1998, 2008, 2018, and 2028 (predicted)
are provided in Figure 6a. The results of class dynamics showed 38.45%, equivalent to 98.2 km2

and 17.46%, equivalent to 27.58 km2 decrease in the dense forest of SWS from period 1998 to 2008
and period 2008 to 2018, respectively. Predicted scenario of dense forest for the year 2028 showed
a reduction of 11.38%, i.e., 14.83 km2 in dense forest. In 1998, dense forest occupied 34.98% of the
study area, which then reduced to 21.57% and 17.8% in the year 2008 and 2018, respectively. The area
under dense forest was further predicted to be decreased and it was expected to occupy 15.77%, i.e.,
115.50 km2 of the study area in the year 2028. Area statistics of multi-temporal analysis exhibited a
significant degradation in dense forest of SWS over the period of three decades. Area under open
forest depicted a high increase of 124.4%, i.e., 86.17 km2 from the year 1998 to 2008. From year 2008 to
2018, a minor increase of 2.3%, i.e., 3.78 km2 was observed. Very small increment of around 1% was
further predicted in the year 2028. Dense patches of the SWS forests were converted to open forest.
Degraded forests in the study area were observed to be gradually increased. Increase of 15.3% of
degraded area was observed during time period between 1998 to 2008, and 6.1% increase from the
year 2008 to 2018 was noted. A minor increase of 0.1% was predicted from the year 2018 to the year
2028. Analysis of non-forest cover classes showed 63.7% and 16.4% increase in cropland area from
the year 1998 to 2008, and from the year 2008 to 2018, respectively. Further increment of 11.7% was
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predicted from year 2018 to 2028. Variations in barren land statistics was observed during the study
period, while water body showed an increase during 1998–2008 and thereafter a decrease in the area
occupied for 2008–2018 time period was observed. Future prediction of 2008–2028 also showed further
decrease in waterbody by 24.9%.

3.4. Fragmentation Analysis at Patch Level

In the SWS, significant changes were observed in the distribution of forest patches between time
intervals (Table 2). Increment in number of smaller patches was one of the fundamental indicators of
forest fragmentation, the reverse of which was observed in the present study area. Overall decrease
in NP in of all three forest cover classes, viz. dense, open, and degraded highlights the reduction
in fragmentation of the SWS. During the first period of study, i.e., 1998–2008, the total NP in dense
forests showed a decline of 17.4%, where the patches got reduced from 1749 to 1444. The total NP
decreased from 1444 to 1437 showed a very minor decrease of 0.5% during the second (2008–2018)
period. Decrease from 1437 to 892 (37.9%) was predicted for the third period, i.e., 2018–2028.

Table 2. Patch level analysis of Total Area (TA) and No of Pataches (NP) for different forest covers classes.

Dense Forest

Patch
Size

TA (ha) NP

1998 2008 2018 2028 1998 2008 2018 2028

0–100 4839.57 4244.49 6800.58 6616.98 1733 1426 1412 872

100–500 2856.15 3274.65 4357.35 3980.16 11 12 23 19

500–1000 1195.02 3157.11 786.15 953.19 2 4 1 1

1000–2000 2572.38 1483.02 1089.18 0 2 1 1 0

>2000 14,148.72 3629.07 0 0 1 1 0 0

Open Forest

Patch
Size

TA (ha) NP

1998 2008 2018 2028 1998 2008 2018 2028

0–100 6454.62 8174.25 6653.07 4901.04 3031 3295 2713 1399

100–500 471.78 4989.24 3761.46 2470.23 3 24 15 11

500–1000 0 2379.96 921.15 2105.1 0 3 1 4

1000–2000 0 0 0 0 0 0 0 0

>2000 0 0 4580.64 6598.44 0 0 1 1

Degraded Forest

Patch
Size

TA (ha) NP

1998 2008 2018 2028 1998 2008 2018 2028

0–100 6621.57 5418.72 5846.58 4975.2 3002 2534 2397 1358

100–500 3443.22 2618.73 2263.05 4774.32 17 10 11 15

500–1000 4262.49 1401.03 1336.95 2163.51 6 2 2 3

1000–2000 2156.31 0 2962.08 1706.94 2 0 2 1

>2000 9804.96 20,867.67 20,245.5 20,717.64 2 3 3 3
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Only 18.9 % of forest under dense vegetation was concentrated in small patches between 0 and
100 ha in the year 1998, and higher proportion of TA about 55% was covered by single fragment of size
greater than 2000 ha. In 2008, TA under size category, i.e., 0–100, 100–200, 200–500 increased, and the
remaining categories showed a decrease in TA. In 2018, 52.2% TA of dense forest was found in patches
less than 100 ha and 33.4% dense forest in patch size of 100–200 ha. TA statistics of patches of dense
forest predicted for the year 2028 forecasted the 57.3% of dense forest would be under patch size less
than 100, 34.4% in 100–200 ha patch size category, and there would be no fragment greater than a patch
size of 1000.

Number of patches when analyzed for open forests showed variations. Total NP increased from
3034 to 3322 (9.5%) during 1998–2008. This showed fragmentation occurrence during the first time
period of 1998–2008. In second time period, i.e., from 2008-2018, total NP decreased from 3322 to
2730, which accounted for 17.8% decrease in open forests. This pointed to a control in fragmentation
during this period. NP in 2028 was predicted to decrease from 2730 to 1415, i.e., a 48.2% decrease,
again indicating decrease in fragmentation. Gain in smaller patches ranging between 0–100 ha was
observed during 1998–2008, where the NP increased from 3031 to 3295. In 1998, 93% of the open forest
area was concentrated in small patches between 0 and 100 ha; the remaining forest area occurred in
isolated patches of larger than 100 ha and less than 200 ha. In 2008, 52.6% TA of open forest were
observed to have a patch size less than 100, 32.1% TA was with patch size 100–200 ha, and only
three fragments exceeded the patch size of 200 ha. In 2018, 28.8% TA occupied category of patch size
0–100 and 1 patch covering 28.8% TA of open forests was bigger than 2000 ha. Prediction of 2028
fragmentation status showed an increase in TA (41%), with a patch size greater than 2000 ha.

Decrease in total NP under degraded forest cover class from 3029 to 2549 (15.5% decline) was
observed during 1998–2008. Time period 2008–2018 showed a 5% decrease in NP of degraded forests.
Considerably a higher decrease in NP was predicted between time periods 2018–2028. In 1998,
the highest TA (37.3%) was occupied by two patches with size greater than 2000 ha. Three fragments
with size bigger than 2000 ha occupied the highest proportions of TA in 2008 and 2018. In 2028, TA was
again predicted to be the highest, i.e., 60.3% in the same category of patch size consisting 3 fragments.
In SWS, the fragmentation analysis at patch level using two metrics, namely TA and NP, showed an
overall reduction in fragmentation. This emphasized that the forest at the wildlife sanctuary was
monitored to a great extent, which controlled the forest fragmentation.

3.5. Fragmentation Analysis at Class Level

Class level fragmentation analysis of forest cover classes over multi-temporal scale, when carried
out using twelve metrics namely NP, GYRATE, PARA, PD, AI, IJI, NLSI, CLUMPY, CONTIG, ED,
CORE, and ENN, showed a decline in forest fragmentation in the SWS (Figure 7). As discussed in
patch level analysis, NP in dense and degraded forests decreased from the year 1998 to 2018 and was
predicted to further decrease in 2028, as per the fragmentation result of the CA-Markov simulated
map. Fragmentation was observed in open classes during the time interval 1998–2008, as reflected
from the increase in NP, which seemed to be monitored later, as indicated by the decreased NP from
2008–2018. Fragmentation was forecasted to be further decreased from 2018–2028.
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GYRATE was said to be inversely related to forest fragmentation. Our analysis of three
time-intervals showed a rise in GYRATE values in all forest cover classes over a period of time.
Higher PARA values were an indicator of fragmentation. A decrease in PARA values was observed in
all three forest covers, except during 1998–2008 where the PARA showed increasing values. A decreasing
trend in PD of dense forests was observed where the values decreased from 2.41 to 1.98 from the year
1998 to 2018 and was predicted to reduce to 0.68 in 2028. In degraded forests, PD also decreased
gradually. In open forests, PD increased from 4.18 to 4.57 in from 1998–2008 and then value decreased
to 3.76 in 2018. In 2028, it would reduce to 1.08. AI showed an ascending trend, indicating a lowering
in fragmentation. Variations were observed in IJI estimates. NLSI again showed a declining trend in
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all forest cover classes from year 1998 to 2028, and CLUMPY showed a rise in its value, except during
1998–2008, where higher values were observed in year 2008 in dense forests. Other parameters viz.
CONTIG, ENN, and CORE also indicated a reduction in fragmentation, which was indicated from
their increased values from the year 1998 to 2018. Values of these metrics were predicted to further
rise from 2018–2028. ED showed an inverse relation with fragmentation. The values of ED showed a
decreasing trend from year 1998 to 2008 in three forest cover classes, with the exception of open forest.

Overall analysis exhibited a lowering of fragmentation, as highlighted from a descending trend in
quantitative estimates of the metrics viz. NP, PARA, PD, IJI, NLSI, and ED, and an ascending trend in
the metrics viz. GYRATE, AI, CLUMPY, ENN, CONTIG, and CORE, with slight variations.

3.6. Fragmentation Analysis at Landscape Level

The focus of the study since remained on forest fragmentation so landscape level analysis in SWS
was restricted to three forest cover classes, namely dense forest, open forest, and degraded forest.
Figure 8 shows trend analysis of different landscape metrics. A gradual decrease in NP, PD, ED, and LSI
was noted. PARA and IJI also showed an overall decrease with slight variations. Increase in values of
metrics namely GYRATE, CORE, ENN, AREA, AI, and PLADJ was observed. Overall results depict
a decline in fragmentation from year 1998 to 2018. Trend analysis of these metrics also indicated a
further decrease in the fragmentation in 2028.
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(d)Edge Density (ED) and Patch Density (PD), (e) Perimeter Area Ratio (PARA) and Landscape Shape
Index (LSI), and (f) Number of Patches (NP) and Interspersion Juxtaposition Index (IJI).

Fragmentation is considered to be an important procedure within the worldwide ongoing process
of landscape degradation, driven by environmental changes and socioeconomic processes like global
change, urbanization, and improvement of transport infrastructure. Many human activities are
said to be responsible for this degradation. Diverse macroeconomic, demographic, technological,
institutional, and political factors are the driving factors for these human activities responsible for
forest degradation [74,75]. Fragmentation analysis results at all three patch, class, and landscape levels
highlight the decrease in SWS fragmentation. This indicates that fragmentation is well controlled
in the sanctuary, which is due to certain management practices adopted in the area. The primary
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reasons for forest degradation in India are well noted by the Gujarat state government. These include
critical livelihood–forest linkage of a large forest dependent, exploitation of forest products beyond its
carrying capacity due to demand and supply gap, frequent forest fires, uncontrolled and unrestrained
over-grazing, illegal felling, and forest land diversion to some other land uses [76]. Even certain past
forest management practices that enhance degradation were noted. These factors can decimate the
forest–biodiversity to a great extent, and thus can degrade the forests. The state has already taken
significant steps to monitor forests. These include in and ex-situ conservation, afforestation/plantations,
social/community/farm forestry, Joint Forest Management (JFM), addressing issues involved in
sub-sectors like grasslands and mangroves, creation of protected areas, improvement in policies,
legal provisions, etc. SWS is one of the Hot Spots of Biodiversity and is thus considered to be under
management and conservation sites, as per The Biological Biodiversity Act, 2002, Section 37. Status-quo
on the conservation of SWS is well maintained by the Gujarat State. Introduction of two important
forest management practices, namely Narmada Dam Catchment Area Treatment and JFM [77,78]
considerably improved the conservation of biodiversity in the forests of Narmada forests. This makes
SWS a better protected area and thus could be the reason for the reduction in fragmentation in SWS.
The results of the present study are also supported by a previous study, where low fragmentation was
observed in the sanctuary [79]. Such results were also seen in a study carried out in other national
parks, where less fragmentation was recorded in the park when compared to non-park areas [80].

4. Conclusions

Random forest classifier was applied on the Landsat images to delineate spatiotemporal forest
cover changes during 1998, 2008, and 2018, in SWS. Meanwhile, the CA-Markov Chain integrated
hybrid model was used to predict a future forest cover scenario. The present analysis was based
on the assumption that the situation in the future would remain unchanged and the trend would
remain similar to what was estimated, but this was not the case all the time. The transition probability
matrix generated between 1998–2008 and 2008–2018 showed an unstable shift in some of the variable
transitions, therefore, a rigorous training of models was done while predicting future scenarios.
Transition probability matrix derived from the classified images of SWS during 1998, 2008, and 2018
showed the variation in different classes with time, and the transition matrix was further used to
predict forest cover status in the year 2018 and 2028. This predicted image of 2018 was compared
with a classified forest cover image of 2018 for validating the predictive model. The forest cover
maps of year 1998, 2008, 2018, and the predicted map of 2028 was subjected to the Fragstats software,
for checking the past and future fragmentation scenario in SWS. Overall, the results of fragmentation
statistics clearly depicted a reduction in fragmentation in the forest areas of SWS during the year
1998, 2008, and 2018. There was a trend of forest degradation, which was also observed in the present
study. It showed the forest degradation is occurring but the rate of forest degradation is gradually
decreasing, and with the reduction in forest fragments it can be seen as a positive sign for the regional
ecosystem. As shown in the transition probability matrix, open forests are increasing with the time
and barelands are gradually being converting into open forest and croplands. The fragmentation is
forecasted to further decrease in 2028, based on the present analysis. A framework for the future
conservation practices could be implemented by using the present study results. To our knowledge,
forest officials of SWS are aware of this need and have successfully implemented management and
conservation practices in the sanctuary. This could be a good implication for forest officials of other
sanctuaries in the country and other countries. These conservation initiatives of the officials could
be considered to be the key reason for making the sanctuary a better protected area, due to which a
decline in fragmentation could be observed.
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