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A B S T R A C T   

Assessing the performance of land change simulation models is a critical step when predicting the future land-
scape scenario. The study was conducted in the district of Varanasi, Uttar Pradesh, India because the city being 
“the oldest living city in the world” attracts a vast population to reside here for short and long-term, leaving the 
city’s ecosystem more exposed to fragility and less resilient. In this work, an approach based on landscape 
metrics is introduced for comparing the performance of the ensemble models designed to simulate the landscape 
changes. A set of landscape metrics were applied in this study that offered comprehensive information on the 
performance of scenario-based simulation models from the viewpoint of the spatial ordering of simulated results 
against the related reference maps. A supervised support vector machine classification technique was applied to 
derive the LULC maps using Landsat satellite images of the year 1988, 2001, and 2015. The LULC maps of 1988 
and 2001 were used to simulate the LULC scenario for 2015 using three Markov chain-based simulation models 
namely, multi-layer perceptron-Markov chain (MLP_Markov), cellular automata-Markov chain (CA_Markov), and 
stochastic-Markov chain (ST_Markov) respectively. The mean relative error (MRE), as a measure of the success of 
simulation models, was calculated for metrics. The MRE values at both the class and landscape levels were 
accounted for 21.63 and 11.45% respectively using MLP_Markov simulation model. The MRE values at both the 
class and landscape levels were accounted for 39.61 and 28.31% respectively using CA_Markov simulation 
model. The MRE values at both the class and landscape levels were accounted for 55.36 and 45.75% respectively 
using ST_Markov simulation model. The MRE values considered at class and landscape levels are further eval-
uated qualitatively for comparing the performance of simulation models. The results indicate that the 
MLP_Markov performed excellently, followed by CA_Markov and ST_Markov simulation models. This work 
showed an ordered and multi-level spatial evaluation of the models’ performance into the decision-making 
process of selecting the optimum approach among them. Landscape metrics as a vital characteristic of the uti-
lized method, employ the maximum potential of the reference and simulated layers for a performance evaluation 
process. It extends the insight into the main strengths and drawbacks of a specific model when simulating the 
spatio-temporal pattern. The quantified information of transition among landscape categories also provides land 
policy managers a better perception to build a sustainable city master plan.   
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1. Introduction 

Land use/land cover (LULC) pattern controlled by both natural and 
socio-economic processes, offers an inclusive understanding of the in-
teractions and associations of Earth’s terrestrial surface with anthro-
pogenic activities (Mmbaga et al., 2017). LULC changes (LULCC) have 
emerged as one of the most profoundly human-induced impacts on the 
Earth’s ecological system. Analyzing the origins, procedures and out-
comes of LULCC in addition to the relation between human-induced 
activities and land-use systems is acknowledged as the fundamental 
research topics in landscape ecology (Wu and Hobbs, 2002). In the last 
few decades unprecedented industrialization and persistent rapid ur-
banization lead to LULCC that have emerged as the primary underlying 
drivers impacting on ecology, agriculture, biodiversity, climate, wildlife 
and regional habitats from global to regional scales (Foley et al., 2005; 
Szilassi et al., 2006; Chapman et al., 2017; Sallustio et al., 2017; Ostad- 
Ali-Askari et al., 2017, 2019, 2020; Ostad-Ali-Askar et al., 2018; Li et al., 
2020; Gupta and Sharma, 2020). Therefore, it is well worth investi-
gating the spatio-temporal dynamics of LULC, which aims at providing 
planned decision for promoting sustainable management of natural 
resources. 

Spatial modelling and simulation have become an effective method 
to analyze LULCC and have also helped in deciding how it would impact 
various components of the Earth’s ecological system (Capitani et al., 
2019). A variety of models has been extensively introduced and 
exploited to simulate and predict the spatio-temporal LULC dynamics 
worldwide and become a focal point among the researchers (Sakieh 
et al., 2015; Mishra and Rai, 2016, Yao et al., 2017; Guidigan et al., 
2019; Gupta and Sharma, 2020). These models provide an insightful 
understanding of the driving forces to predict the future changes among 
LULC categories involving different scenarios or aspects for any region 
(Camacho Olmedo et al., 2018). However, modelling and simulation of 
LULCC comprise the complexity of not only natural constraints but also 
human drivers (Le et al., 2008). So, understanding the drivers of LULCC 
is obligatory to reduce and manage their impacts on the natural envi-
ronment (Turner, 2010; Kolb et al., 2013). The spatio-temporal change 
analysis is a complex and nonlinear practice with the specific direct and 
indirect drivers at various scales that are very diverse (Lambin et al., 
2003; Kolb et al., 2013). The competency of a model and its success rate 
depends on the studying or involvement of driving factors, cross-scale 
dynamics, various levels and sub-levels of analysis, spatial relations 
and neighbourhood effects, integration level, and temporal changing 
direction of landscapes and its drivers (Lambin et al., 2003; Verburg 
et al., 2004; Bürgiet al., 2004; Eastman et al., 2005; Kolb et al., 2013). 
The complexity, inherent dynamic characteristics, and ambiguity of 
natural systems require a conceptualized demonstration of sustainable 
LULC practices based on modelling processes in rapidly growing regions. 

Satellite-based remote sensing (RS) technologies and Geographical 
Information System (GIS) with the enormous development brought 
more opportunities in spatial landscape planning and management 
practices. Using remotely sensed data is as an effectual way to generate a 
diverse set of temporal LULC maps at different observational scales 
(Mishra and Rai, 2016; Yao et al., 2017; Mishra et al., 2018; Du et al., 
2018; Tang and Di, 2019). Thus, it is very beneficial to improve the 
understanding and modelling of LULC change processes. The significant 
development has been witnessed in the field of LULCC simulation and 
modelling with ever-increasing availability of data from remote sensing 
and other sources. The operations of improved statistics, coupled with 
advanced mathematical algorithms, have enhanced the performance 
and prediction rate of LULCC simulation models. A variety of spatially- 
explicit land change models have been widely introduced and exploited 
to simulate future landscape scenarios in different regions around the 
world (Mitsova et al., 2011; Arsanjani et al., 2013; Sakieh and Sal-
manmahiny, 2016; Mishra and Rai, 2016; Yao et al., 2017; Mishra et al., 
2018; Islam et al., 2018; Kantakumar et al., 2019; Varga et al., 2019; Cao 
et al., 2020). The land change simulation models compatible with 

remotely sensed data have been used as well to mimic the dynamic 
processes of LULCC under different scenarios (Hamad et al., 2018; Liu 
et al., 2019). These models are considered as reliable tools for analyzing 
the dynamic process of LULC conversion with reasonable accuracy and 
providing insights concerning management alternatives. Each land 
change simulation model has its drawbacks and strengths reported by 
Triantakonstantis and Mountrakis (2012). So, it is required to overcome 
the inadequacies of each model by coupling them to work as comple-
mentary to each other. In several studies, the performance of coupled 
modelling methods has been evaluated for LULCC simulation and future 
landscape prediction (Arsanjani et al., 2013; Bozkaya et al., 2015; 
Dezhkam et al., 2017; Mishra et al., 2018; Nasiri et al., 2019; Varga 
et al., 2019). 

Performance appraisal of land change models is an essential step 
while simulating the dynamic phenomenon of LULC transformation. 
Several methods including simple least squares regression (Rafiee et al., 
2009), kappa-based statistics (Pontius and Millones, 2011; Mishra and 
Rai, 2016), and receiver operating characteristic (ROC) curve (Pontius 
and Batchu, 2003; Pontius and Si, 2014) are available for evaluating the 
performance of land change simulation model. In some studies, the ac-
curacy of the simulation process is performed by comparing the output 
map at the ending time of the validation interval to the reference map at 
the same time (Mishra and Rai, 2016; Chakraborti et al., 2018). The 
individual method has its merits and demerits used to provide numeric 
signatures about the information on the agreement between the pre-
dicted outputs and the actual reference input layer (Sakieh and Sal-
manmahiny, 2016). The kappa-based measures are not suitable for 
quantity-based accuracies, having a probability of producing 
misleading information as described by Pontius and Millones (2011). It 
is observed that the two-map comparison in case of persistence land-
scape, typically gives large values for percent correct and kappa, irre-
spective of correctly simulated changes (Varga et al., 2019). The simple 
least squares regression methods and ROC curve is not assumed to 
provide spatial information of LULC patterns in terms of an agreement 
between two thematic maps. One of the significant drawbacks of these 
methods is their inability to provide details of the morphological con-
tract found between simulated and reference maps (Dezhkam et al., 
2017). Therefore, Performance appraisal of simulation models based on 
spatially-explicit method has achieved great attention and priority. 
Spatial metrics powerful tools in assessing simulation success, are the 
quantitative measure of landscape characteristics at both composition 
and configuration levels. Spatial landscape metrics based on landscape 
ecology, are valuable tools in mapping and quantifying LULC charac-
teristics. The landscape metrics are commonly used in ecological in-
vestigations (Peng et al., 2010; Frazier and Kedron, 2017). However, 
they are now being extended to enhance the understanding of LULC 
change processes at the landscape level. Several studies have exhibited 
the utilization of the landscape metrics in describing spatio-temporal 
LULC dynamics (Paudel and Yuan, 2012; Asgarian et al., 2014; Smir-
aglia et al., 2015; Kumar et al., 2018). However, minimal information is 
available regarding the validation and evaluation of the land change 
simulation models using landscape metrics. Wu et al. (2009) assessed 
the SLEUTH model by applying multi-method and reported that the 
method based on landscape metrics was profoundly best for analysis and 
assessment of the modelling outputs. Sakieh and Salmanmahiny (2016) 
assessed the performance of a scenario-based GEOMOD model to vali-
date the simulative outputs. In some studies, the performance of an in-
tegrated CA_Markov simulation model was evaluated with the help of 
landscape metrics indicating close agreement between simulated and 
reference layers (Guan et al., 2011, Amiri et al., 2017, Dezhkam et al., 
2017). However, the number of studies comparing the performance of 
multiple integrated models for land change simulation-based on land-
scape metrics is limited. The studies discussed in the above paragraphs 
reveal that there are only a limited research works which focused on the 
ensemble of more than one land change simulation models to assess the 
enhancement in their performance. And there are rarer studies which 
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compared the performance of two or more ensemble models for their 
ability to simulate the LULC changes over the spatial and temporal 
scales. Thus, this study attempts to fill this gap by incorporating three 
ensemble models viz. MLP_Markov, CA_Markov, and ST_Markov for the 
purpose of comparing their performances in LULC simulation in the 
Varanasi district of Uttar Pradesh, India. Furthermore, since Varanasi is 
the “oldest living city in the world” (Prajapati and Tripathi, 2008; 
Shukla, 2013; Reynolds, 2014; Omar et al., 2020), experiences huge 
population influx, for both short term and long term, and hence faces 
danger of disturbance in the fragile floral and faunal ecosystems. 
Therefore, analyzing the transitions among LULC categories using 
advanced ensemble models and comparing their performances is 
another novel issue that this study undertakes. 

For the above stated reason, the present work selected the main 
urban area of Varanasi district, India as the study site. This area has 
experienced a high growth rate in the population and fast urbanization 
in the last few decades. This study offers a sequence of analyses to 
overcome the frequent problems associated with the identification of 
spatial drivers of specific LULC change processes and examines how 
these drivers can be translated into accurate land change simulation. 
More specifically the present study aims to (1) use and analyze different 
landscape metrics during the land change simulation process based on 
the geospatial scenario; (2) compare the performance of three integrated 
simulation models, i.e., ST_Markov, CA_Markov, and MLP_Markov based 
on landscape metrics. The outcomes of this work could provide valuable 
insights into the spatial pattern of LULCC and the validation of simulated 
maps. These geospatial scenario-based models applied to simulate 
changes occurred in landscape structure are of great attention to poli-
cymakers, land managers and local authorities to use land resources 
sustainably. 

2. Study site 

Varanasi district (Uttar Pradesh), India (Fig. 1), Geographically lying 
between 25◦ 10′ to 25◦ 37′ N latitude and 82◦ 39′ to 83◦ 10′ E longitude, 
and covering an area of 1532.91 km2 has been chosen to be the study site 
for this work. It is situated on the bank of holy river Ganga. This part of 
the Ganga River Basin, being agriculturally very productive region, is 
sculpted due to interplay of climate, tectonics, and anthropogenic 

factors (Pandey, 2014; Arora et al., 2018, 2019) and replenished with 
annual soil-forming ingredients by several major rivers and their trib-
utaries (Raju et al., 2015; Raju and Pandey, 2013). It experiences humid 
subtropical climatic condition with considerable variation between 
summer and winter temperature and rainfall. It is also well-known for 
religious conviction and cultural activities for many decades. The Ganga 
river and its tributaries like Gomati, Varuna along with many numbers 
of natural and artificial ponds represent the waterbody component in the 
present study area (Mishra et al., 2018). Raju and Bhatt (2015) pointed 
out that 118 ponds have been reported to be existing in the Varanasi city 
itself. Because of annual flooding in the rivers, soil along the active 
floodplain is recharged with younger alluvium and older alluvium is 
found in the upland areas (Singh and Singh, 1971). Singh (2015) in his 
extensive study of flora of Varanasi district reported 1015 plant species 
of 601 genera related to 116 families. Varanasi is densely populated area 
in the because of its location on the bank of the most fertile Ganga river, 
existence of various educational institution, being the oldest surviving 
religious city of the world, etc. and these factors lead to dynamic nature 
of the land use/ land cover transitions. 

3. Materials and methodology 

The satellite images from different sensors, e.g., Landsat-TM, Land-
sat-ETM+, and Landsat-OLI acquired on 4 November 1988, 31 October 
2001, and 15 November 2015 respectively, were used for land change 
simulation purpose. All the satellite images were downloaded from the 
official website of USGS earth explorer (http://earthexplorer.usgs. 
gov/), respective details of which are given in Table 1. The slope and 
aspect were computed using SRTM DEM with 90 m version 3. The 
toposheet and Google Earth images were used to extract road and 

Fig. 1. Location Map of the study site as viewed on Landsat 8-OLI data.  

Table 1 
List of satellite data applied in this study.  

Satellite-sensor Path/row Acquisition date Product type 

Landsat 5-TM 142/42, 142/43 4 November 1988 L1T 
Landsat 7-ETM+ 142/42, 142/43 31 October 2001 L1T 
Landsat 8-OLI/TIRS 142/42, 142/43 15 November 2015 L1T  
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railway layers. 
The ENVI (v. 5.1) software was used for pre-processing, interpreta-

tion and LULC classification of satellite images. The landscape metrics 
were calculated by utilizing FRAGSTATS (v.4.2.1) software. In this 
work, the integrated land change simulation models such as ST_Markov, 
CA_Markov, and MLP_Markov were applied using the IDRISI Selva 
software. The CROSSTAB module available in the IDRISI software was 
used to generate a cross-tabulation table between two images for 
observing the reliability of images and distribution of pixels between the 
LULC categories. The Markov chain (MC) analysis is one of the most 
commonly used stochastic methods in simulation and modelling pro-
cesses. In this study, the estimated quantities in 2015 are based on the 
transitions during 1988–2001, using the MARKOV module of IDRISI. 
The land change simulation was performed using the CA_MARKOV 
module and MLP_Markov architecture available in the Land Change 
modeler (LCM) component of IDRISI. The transition probability matrix 
provided by MC is used during the simulation CA_Markov and 
MLP_Markov simulation models. 

3.1. Pre-processing and LULC classification of satellite images 

First of all, the multi-temporal Landsat images were imported into 
ENVI platform and layer-stacked all the spectral bands. The QUick At-
mospheric Correction (QUAC) method available in the ENVI software, 
was applied to perform atmospheric correction of multi-temporal 
Landsat satellite images. The image-to-image registration method was 
utilized to co-register all the datasets to the Universal Transverse Mer-
cator projection system (UTM), Zone 44 North, WGS 1984 datum. The 
first-degree polynomial equation and nearest-neighbor resampling 
technique was used to set the pixel size at 30 m. After that, spatial 
subsetting was performed to extract the area under investigation. The 
false-colour composites (FCCs) of all the images were produced using 
the appropriate band combination. These FCCs were utilized for the 
analysis and creation of training sites for individual LULC category. The 
transformed divergence (TD) method-based separability analysis was 
applied to examine the quality of training sites before the LULC classi-
fication. The training and testing datasets comprising various LULC 
categories were collected from diverse locations in the study area using a 
random sampling method. 

The LULC maps of the years 1988, 2001 and 2015 were produced by 
applying support vector machine (SVM) classification method. Seven 
broad LULC categories for instance, agriculture, fallow land, sparse 
vegetation, dense vegetation, urban, sand, and water bodies, were pre-
pared according to the landscape of the study site. The accuracies of 
produced LULC maps were evaluated by applying measures such as 
producer’s accuracy (PA), user’s accuracy (UA), and overall accuracy as 
prescribed by Congalton and Green (1999). The change analysis for all 
the LULC products during the periods defined as 1988–2001, 
2001–2015, and 1988–2015 was also performed. 

3.2. Analysis of landscape metrics 

In order to measure the changing LULC patterns within the study 
region, landscape indices were computed with the help of FRAGSTATS 
4.2.1 software (McGarigal et al., 2002). In the last few decades, there has 
been an increasing number of statistical measures used for attributing 
landscape composition (Cushman et al., 2008). Several metrics have 
been evolved for describing the spatial pattern of landscapes at 
composition and configuration levels (Kong et al., 2012; Smiraglia et al., 
2015; Kumar et al., 2018). But the metric selection is hampered by 
inherent redundancy and similar information of the metrics themselves. 
Some most frequently used class level and landscape-level metrics 
(Jaafari et al., 2015; Sakieh and Salmanmahiny, 2016; Dezhkam et al., 
2017) were calculated for all the classified images. For each of the seven 
major LULC classes, seven metrics depicting different features of the 
landscape mosaic, including the total class area (CA), number of patches 

(NP), mean patch area (Area_MN), edge density (ED), mean Euclidean 
nearest neighbour distance (ENN_MN), Landscape shape index (LSI), 
and largest patch index (LPI) were calculated and listed in Table 2. The 
structure of a landscape affects its function and practices (Farina, 2006). 
A more comprehensive description of the metrics used in this work is 
given by McGarigal et al. (2012). 

3.3. Land change simulation modelling 

In the present study, historical growth scenario was used to perform 
model calibration and simulation of LULCC for the study area under 
investigation. The simulation of structural changes and transitions in 
landscapes are gaining a lot of interests by remote sensing community. 
This study employed three scenario-based hybrid simulation models, 
namely ST_Markov, CA_Markov, and MLP_Markov, to evaluate their 
performance and success in view of measuring the spatial agreement 
between the patterns of reference and simulated data. The working flow 
chart adopted in the study is illustrated in Fig. 2. 

The Markov chain (MC) analysis is one of the most commonly used 
tools for describing the behavior of complex systems. The theoretical 
basis of MC analysis is originated through the practice of creating 
Markov random systems for optimized control and anticipation 
(Aaviksoo, 1995; Jiang et al., 2009; Pirnazar et al., 2018). The MC model 
quantifies the conversion and transfer rate between various LULC types 
(Mirkatouli et al., 2015; Tsarouchi et al., 2014). It computes the 
changing probability of a pixel from a landscape type to a different using 
the observed data within a particular time period. It leads to the for-
mation of a transition probability matrix which is assumed to be 
spatially independent (Brown et al., 2000; Eastman, 2006). However, 
the propensity of a changing pixel is not only based on its present status 
but also affected by its neighboring pixels. As a result, a stand-alone MC 
model does not describe a spatially distributed changing pattern of LULC 
types (Araya and Cabral, 2010). Therefore, it needs to integrate MC with 
other models for overcoming the inadequacy to work as complementary 
to each other. 

The first simulation model is ST_Markov that integrates both sto-
chastic and Markov chain algorithms. The MC analysis was performed 
before stochastic processes between LULC layers of the year 1988 and 
2001 to simulate and predict the LULC scenario for the year 2015. The 
LULC maps of two dates (1988–2001) were analyzed to generate a 
transition probability matrix (Table 3), a transition area matrix 
(Table 4), and Markov conditional probability images (Fig. 3). After 
that, all the Markov conditional probability images were combined into 
a single image for simulating and predicting future scenario (Mishra 
et al., 2018). 

The second simulation model is CA_Markov that integrates both 
cellular automata and Markov chain algorithms. The MC model does not 
consider spatial contiguity in different types of LULC transformations 
that are likely to occur (Eastman, 2006). Therefore, the CA-MC model 
was used to integrate the probable spatial information of transitions to 
the MC process. For running the CA_Markov, initial LULC map of the 
year 1988, the transition area matrix, the transition probability matrix, 
and transition probability images were applied. The CA_Markov simu-
lation model is not able to reveal the constraints and driving factors of 
LULCC (Eastman, 2006). So, a 5 × 5 CA contiguity filter was applied for 
assigning low suitability scores to the inaccessible cells (Mitsova et al., 
2011; Salehi-Hafshejani et al., 2019). The multi-criteria evaluation 
method was applied to create a suitability map of individual LULC types 
(Fig. 4). Finally, the CA_Markov model available in IDRISI Selva soft-
ware was executed to simulate the LULC for year 2015 by exploiting the 
Markov transition area matrix, suitability maps, the 5 × 5 CA contiguity 
filter, and the LULC map of year 2001 as base (Mishra et al., 2018). 

The third simulation model is MLP_Markov that integrates both the 
MLP neural network and Markov chain algorithms. In this study, LCM 
module available in IDRISI was used to run MLP. The architecture of 
MLP is based on feed-forward neural network process. In general, neural 
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networks are analogous to biological neurons. It consists of multiple 
layers of simple computing nodes that can operate complex nonlinear 
systems. The MLP creates a network of neurons between the driving 
forces and the classes of change and persistence (Mishra et al., 2014; 

Mazumdar et al., 2016). The MLP neural network is capable of 
combining all the variables at a time, concerning the LULC transitions 
(Mishra and Rai, 2016). Only the main transitions among the LULC, 
responsible for the landscape dynamics were added in the sub-model to 

Table 2 
Description of landscape metrics.  

Concept Type of metrics Landscape metrics Abbreviation Range Units 

Fragmentation Landscape composition Number of patches NP NP > 0, without limit None 
Fragmentation Area Landscape configuration Mean patch area AREA_MN AREA_MN > 0, without limit Hectare 
Area Landscape composition Total class area CA CA > 0, without limit Hectare 
Density Landscape configuration Edge density ED ED ≥ 0, without limit Meters per hectare 
Isolation Landscape configuration Mean Euclidean nearest neighbour distance ENN_MN ENN > 0, without limit Meters 
Dominance Landscape composition Largest patch index LPI 0 < LPI ≤ 100 Percent 
Shape, aggregation index Landscape configuration Landscape shape index LSI LSI ≥ 1, without limit None  

Fig. 2. Methodology Flow Chart.  

Table 3 
Markov transition probability matrix of LULCC during 1988–2001.  

LULC category Agriculture Dense Vegetation Sparse vegetation Fallow land Urban Water bodies Sand 

Agriculture  0.172  0.081  0.330  0.147  0.263  0.006  0.000 
Dense vegetation  0.319  0.140  0.458  0.042  0.032  0.009  0.000 
Sparse vegetation  0.440  0.111  0.315  0.099  0.028  0.007  0.000 
Fallow land  0.423  0.085  0.341  0.122  0.009  0.015  0.006 
Urban  0.037  0.030  0.039  0.037  0.830  0.019  0.009 
Water bodies  0.079  0.052  0.169  0.086  0.021  0.467  0.126 
Sand  0.059  0.001  0.062  0.223  0.001  0.260  0.395  

Table 4 
A transition area matrix during period of 1988–2001.  

LULC category Agriculture Dense Vegetation Sparse vegetation Fallow land Urban Water bodies Sand 

Agriculture 1,060,174 260,787 1,091,732 372,931 37,290 20,767 810 
Dense vegetation 172,386 75,721 247,299 22,441 17,138 4817 0 
Sparse vegetation 978,102 247,028 700,018 221,868 61,844 15,746 172 
Fallow land 347,646 69,466 280,430 100,088 6918 12,198 5040 
Urban 17,446 4947 34,768 7053 98,705 3079 1260 
Water bodies 12,635 8380 27,295 13,804 3394 75,175 20,322 
Sand 2694 46 2821 10,190 46 11,824 17,994  
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improve the performance of the MLP neural network (Mishra and Rai, 
2016). Here, a total six environmental variables including static 
(elevation, slope, and aspect) and dynamic (distance from urban, dis-
tance from roads, and distance from the rail network) were considered. 
An empirical likelihood image as a qualitative variable was used. These 
seven variables (Fig. 5) were used as inputs to produce transition po-
tential maps during MLP_Markov based simulation process. The network 
of major roads and railway lines were considered as constraints. The 
MLP neural network automatically generates a random sample of pixels 
during the LULC transition during the required time. In total, 50% of the 
samples were randomly selected as the training data, whereas remaining 
50% were used as the testing data. Accuracy of 0.877, a quantification of 
the calibration was achieved after completing the MLP process. Finally, 
the simulation of the LULC scenario was executed using transition po-
tential maps (Mishra et al., 2018). 

3.4. Evaluation of model performance based on landscape metrics 

Generally, the performance of a model is evaluated by comparing the 
reference and simulated maps. Firstly, the LULC layer for the year 2015 
was generated by using ST_Markov, CA_Markov, and MLP_Markov 
simulation models based on transitions among classes from 1988 to 
2001. The simulated outcomes were then compared with the reference 
LULC map derived from satellite imagery of the year 2015. The land-
scape metrics (Table 2) were calculated to quantify the agreement be-
tween the spatial layers of simulated and reference data. The Relative 
Error (RE) and Mean Relative Error (MRE) indices given by Dezhkam 
et al. (2017) were used for comparing the metrics derived from simu-
lated and reference layers in order to assess the performance of simu-
lation models. The RE and MRE values can be calculated using equations 

(1) and (2) as given below: 

RE =

[(
Mp − Mr

)

Mr

]

*100 (1)  

where Mp and Mr are the landscape metric values derived from the 
simulated and reference LULC maps, respectively. 

MRE =
1
n
∑n

i=1
REi (2)  

where, REi = estimated relative error of simulation model for individual 
LULC type for each metric; n = number of all estimated relative errors. 

Dezhkam et al. (2017) proposed a categorization scheme based on 
RE and MRE values to evaluate the success of simulation process in 
terms of the variation of the metrics derived from simulated and refer-
ence layers (Table 5). The RE values were further categorized into 
qualitative details to provide a simple and quick analysis of model 
performance. The LULC map strongly affects the accuracy of landscape 
metrics derived from it. In general classification accuracy of 85% is 
acceptable for LULC maps (Congalton and Green, 2009). 

4. Results 

4.1. LULC maps and accuracy assessment 

The LULC maps based on SVM classifier, of the years 1988, 2001, and 
2015 are represented in Fig. 6. The overall mapping accuracies for the 
LULC maps of years 1988, 2001, and 2015 were found to be 86.94, 
88.84, and 89.25%, respectively. 

Fig. 3. Markovian images.  

A. Arora et al.                                                                                                                                                                                                                                   



Ecological Indicators 128 (2021) 107810

7

4.2. LULCC analysis 

In this study, the LULCC was quantified during the periods 
1988–2001, 2001–2015, and 1988–2015 respectively. The changes in 
LULC were investigated by gains and losses occurred in different land-
scape categories (Fig. 7). 

4.3. Evaluation of simulation models using landscape metrics 

Different landscape metrics were derived using the simulated and the 
reference LULC maps to provide information on changing pattern of 
landscape and its configuration. 

4.3.1. Performance evaluation based on metrics at class level 
The simulated LULC classes of the year 2015 based on three land 

change models, namely ST_Markov, CA_Markov, and MLP_Markov are 
shown in Fig. 8(a, b, and c). 

Differences between simulated maps of the year 2015 based on three 
land change models and a reference map of the year 2015 regarding the 
spatial arrangement of LULC types are shown in Figs. 9, 10, and 11 
respectively. 

The negative (underestimated) and positive (overestimated) RE 
values were found for every landscape metric of LULC types. The 
comprehensive description of the RE values for the calibrated ST_Mar-
kov simulation model is shown in Tables 6, 7 and 8. 

Regarding the NP metric, the simulation model generated over-
estimated RE results for sparse vegetation, urban, water bodies and sand 
classes (46.05, 48.24, 51.83 and 88.93%, correspondingly) and in 
contrast, underestimated RE values for agriculture, dense vegetation and 

fallow land classes (− 40.10, − 43.28 and − 54.90% respectively). By 
comparing the simulated and reference maps, agriculture and dense 
vegetation classes signified average, sparse vegetation, urban, water 
bodies, fallow land and sand represented low rank of agreement. In case 
of the AREA_MN metric, this model produced overestimated RE results 
for dense vegetation, water bodies, and sparse vegetation (60.27, 54.44, 
and 45.78%, respectively) and in contrast underestimated RE values for 
agriculture, fallow land, urban, and sand (-45.52, − 37.39, − 39.03 and 
− 52.39% respectively). The agreement level between the simulated and 
reference maps data are found to be average (fallow land, urban), and 
low (sparse vegetation, agriculture, dense vegetation, sand, and water 
bodies) respectively. For CA metric, the model generated the over-
estimated RE results for sand, sparse vegetation, urban, water bodies, 
and dense vegetation (83.93, 93.38, 95.32, 122.78, 139.75%, respec-
tively) and in contrast underestimated RE values for agriculture and 
fallow land (− 47.17, − 43.82 respectively). The level of agreement be-
tween the simulated and reference map data are found to be average 
(fallow land), and low (sparse vegetation, dense vegetation, agriculture, 
urban, water bodies and sand) respectively. For ED metric, there is 
overestimated RE results for dense vegetation, urban, and water bodies 
(55.47, 50.28, and 59.99%, respectively) and in contrast underestimated 
RE values for agriculture, sparse vegetation, fallow land, and sand 
(− 55.33, − 45.33, and 30.98% respectively). The rank of agreement 
between the simulated and reference layers are found to be average 
(sand), and low (sparse vegetation, dense vegetation, agriculture, fallow 
land, urban, and water bodies) respectively. Comparing the simulated 
and reference maps, sand class showed average agriculture, fallow land, 
sparse vegetation, dense vegetation, urban, and water bodies repre-
sented low level of agreement. In case of ENN_MN metric, the model 

Fig. 4. Suitability maps for individual LULC categories.  
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created overestimated RE values for agriculture and sparse vegetation 
(49.89 and 55.40%, correspondingly) and in contrast underestimated RE 
values for dense vegetation, fallow land, urban, water bodies and sand 
(− 47.28, − 40.41, − 47.18, − 42.79 and − 45.90% respectively). The 
fallow land, water bodies, and sand represented average while agricul-
ture, dense vegetation, sparse vegetation, and urban classes showed low 
rank of agreement between simulated and reference maps. In terms of 
LPI metric, this model produced overestimated RE values for agricul-
ture, fallow land, and water bodies (43.21, 59.17, and 64.46%, respec-
tively) while underestimated RE values for sparse vegetation, urban, 
dense vegetation, and sand categories (− 36.82, − 42.46, − 50.04, and 
53.16% respectively). The agreement level between the simulated and 
reference maps are found to be average (agriculture, sparse vegetation, 
and urban), and low (dense vegetation, fallow land, water bodies, and 
sand) respectively. For LSI metric, there are overestimated RE results for 
fallow land, urban, water bodies, and sand (49.96, 62.48, 56.64 and 
57.37%, respectively) and in contrast underestimated RE values for 

agriculture, dense vegetation, and sparse vegetation (− 47.13, − 38.83, 
and 43.37% respectively). The dense vegetation and sparse vegetation 
showed average, while agriculture, fallow land, urban, water bodies, 
and sand represented low level of agreement between the simulated and 
reference maps. The ST_Markov simulation model performance was 
found to be high for ENN_MN and low for CA metrics respectively in 
terms of all LULC types. The detailed description of MRE values are 
given in Table 6. The MRE value was measured to be 55.36%, derived 
from class level metrics reflecting low model performance. 

The comprehensive description of the RE values for the calibrated 
CA_Markov simulation model is shown in Tables 9, 10 and 11. 

In case of the NP metric, there are considerable overestimated RE 
values for sparse vegetation, water bodies, fallow land, and sand classes 
(32.21, 32.61, 33.03, and 43.51%, respectively) and conversely under-
estimated RE values for urban, agriculture, and dense vegetation cate-
gories classes (− 18.73, − 25.88, and − 31.34% respectively). The 
agriculture and urban represented good, fallow land, sparse vegetation, 
dense vegetation, water bodies and sand classes showed average 
agreement level by comparing the simulated and reference outputs. For 
the AREA_MN metric, the model generated overestimated RE values for 
dense vegetation, urban, and water bodies (33.40, 22.25, and 41.95%, 
respectively) and on other side there are underestimated RE values for 
agriculture, sparse vegetation, fallow land, and sand classes (− 36.48, 
− 26.57, − 37.90 and − 45.149% respectively). The level of agreement 
between the simulated and reference data are found good for sparse 
vegetation and urban, average for agriculture, dense vegetation, water 
bodies, and fallow land and low for sand. Regarding the CA metric, the 
model produced overestimated RE values for agriculture, dense 

Fig. 5. Explanatory variables used in the study.  

Table 5 
Proposed relative error categorization scheme for evaluating the performance of 
simulation models.  

Absolute RE 
(%) 

Measure of agreement (between the simulated 
and reference layers) 

Model 
performance 

0–15 High Excellent 
15–30 Good Good 
30–45 Average Moderate 
> 45 Low Weak  
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Fig. 6. Classified LULC maps of the study area.  

Fig. 7. Gains and losses in various LULC categories.  
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vegetation, fallow land, and water bodies (44.04, 40.26, 47.37, and 
49.14%, respectively) and on the other side underestimated RE values 
for sparse vegetation, urban, and sand (− 46.52, –32.84, and − 51.89% 
respectively). Comparing the simulated and reference outputs, agricul-
ture, dense vegetation, and urban categories represented average, fallow 
land, water bodies, sparse vegetation, and sand represented low level of 
agreement. For the ED metric, there are significant overestimated RE 
results for dense vegetation, fallow land, and water bodies (29.33, 
54.21, and 48.48%, respectively) and conversely underestimated RE 
values for agriculture, sparse vegetation, urban, and sand (–33.10, 
− 36.40, − 41.74, and − 49.02% respectively). The agreement rank be-
tween the simulated and reference maps are good for dense vegetation, 
average for agriculture, sparse vegetation, and urban, and low for water 
bodies, and sand classes. In terms of the ENN_MN metric, the model 
produced overestimated RE values for sparse vegetation and urban 
(52.05 and 39.91%, respectively), and in contrast underestimated RE 
values for agriculture, dense vegetation, fallow land, water bodies and 
sand (–23.22, − 38.49, − 46.80, − 31.60 and − 46.15% respectively). The 
agriculture represented good, dense vegetation, water bodies, and urban 
showed average, and sparse vegetation, fallow land, and sand classes 
demonstrated low agreement level between simulated and reference 
maps. In case of LPI metric, the model produced overestimated RE re-
sults for agriculture, dense vegetation, fallow land, and water bodies 

(37.39, 46.78, 48.85 and 49.53%, respectively) and in contrast there are 
underestimated RE values for sparse vegetation, urban, and sand 
(− 46.03, − 29.49, and − 45.38% respectively). The agreement level be-
tween the simulated and reference map data are found to be good 
(urban), average (agriculture), and low (fallow land, sparse vegetation, 
dense vegetation, water bodies, and sand) respectively. In case of LSI 
metric, the model produced overestimated RE results for fallow land, 
and water bodies (42.59 and 48.46%, respectively) and contrary 
underestimated RE values for agriculture, dense vegetation, sparse 
vegetation, urban, and sand (− 40.34, − 34.08, 29.85, 46.73 and 51.81% 
respectively). The agreement level between the simulated and reference 
map data are found to be good (sparse vegetation), average (agriculture, 
dense vegetation and fallow land), and low (urban, water bodies, and 
sand) respectively. The CA_Markov model performance was found to be 
high and low for NP and CA metrics, respectively for all LULC categories. 
The MRE values were found to be highest (31.04%) and lowest (46.98%) 
for CA and ENN_MN metrics respectively. The detailed description of 
MRE values are represented in Table 9. The MRE value was measured to 
be 39.61%, derived from class level metrics reflecting average model 
performance. The comprehensive description of the RE values of the 
calibrated MLP_Markov simulation model is shown in Tables 12, 13 and 
14. 

The NP metric depicted a substantial difference between simulation 

Fig. 8. Simulated LULC classes of the study area based on (a) ST_Markov; (b) CA_Markov; and (c) MLP_Markov models.  
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and reference layers in terms of RE values. The simulation model tends 
to overestimate RE values for fallow land, urban, and sand classes 
(33.63, 13.30, and 40.08% respectively), conversely, there are under-
estimated RE values results for water bodies, sparse vegetation, dense 
vegetation, and agriculture (− 35.68, − 27.62, –22.52, and − 16.79% 
respectively). The degree of similarity related to NP metric for sand, 
water bodies, fallow land, sparse vegetation, dense vegetation, agricul-
ture, and urban categories are average, average, average, good, good, 
and high respectively. For AREA_MN metric, the simulation model 
represented overestimated outcomes for agriculture, dense vegetation, 
sparse vegetation, and water bodies having RE values of 13.87, 14.60, 
19.27, and 33.03%, respectively. In contrary, fallow land, urban, and 
sand classes showed underestimated results (RE = − 25.37, − 10.91, 
− 33.77 respectively). Considering AREA_MN metric, the agreement 
level between the simulated and reference map data is found to be high 
(agriculture, dense vegetation and urban), good (fallow land and sparse 
vegetation), and average (sand and water bodies), respectively. 
Regarding the CA metric, there are substantial overestimated values for 
agriculture, urban and water bodies, which demonstrated 12.59, 17.71, 

and 22.99% of RE values respectively, conversely, there are under-
estimated results for sparse vegetation, sand, fallow land, and dense 
vegetation with RE values of − 29.66, − 25.65, − 20.84, and − 18.08% 
respectively. The simulated and reference layers show high (agricul-
ture), and good (urban, fallow land, sparse vegetation, dense vegetation, 
water bodies and sand) level of agreement. For the ED metric, there are 
overestimated results for urban, water bodies, and sand categories (RE 
= 11.83, 26.26, and 28.61%, respectively). Agriculture, dense vegeta-
tion, sparse vegetation, and fallow land categories depicted under-
estimated RE values (− 15.33, − 17.48, − 13.04, and –22.61% 
respectively). The level of agreement is high for sparse vegetation and 
urban, and good for agriculture, dense vegetation, water bodies, fallow 
land and sand categories by comparing simulated and reference layers. 
In case of the ENN_MN metric, there are a significant overestimated RE 
value for sparse vegetation class demonstrating 18.94%, followed by 
dense vegetation category (RE = 13.26%) Conversely, there are 
underestimated results for agriculture, fallow land, urban, water bodies 
and sand categories with RE values of − 17.55, − 16.68, − 15.00, –23.81 
and − 38.01% respectively. The degree of similarity concerning 

Fig. 9. Differences between the ST_Markov based simulated and reference LULC categories.  
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ENN_MN metric for sand, water bodies, urban, fallow land, sparse 
vegetation, agriculture, dense vegetation are average, good, good, good, 
good, good, and high correspondingly. In terms of the LPI metric, 
simulation model depicted overestimated results for dense vegetation, 
fallow land, agriculture, sparse vegetation, and water bodies 16.90, 
18.76, 19.22, 20.40, and 30.53%, respectively. In contrary, there are 
underestimated values for urban and sand classes (RE = − 15.30 and 
− 26.53% respectively). Considering LPI metric, the agreement level 
between simulated and reference layers was evaluated as good (agri-
culture, fallow land, sparse vegetation, dense vegetation, urban, and 
sand), and average (water bodies), respectively. For the LSI metric, the 
model generates overestimated RE results for fallow land, urban, water 
bodies, and sand (25.89, 19.32, 24.97 and 21.86%, respectively) and in 
contrast there are underestimated RE values for agriculture, dense 
vegetation, sparse vegetation (− 14.71, − 15.28, and –23.59% respec-
tively). Comparing the simulated and reference layers, urban category 
depicted high, agriculture, fallow land, sparse vegetation, dense vege-
tation, water bodies categories represented good and sand showed 

average level of agreement. The MLP_Markov model illustrated high 
performance for ED metric and low for NP metric in terms of all LULC 
types. The MRE values were found to be highest (19.31%) and lowest 
(27.09%) for ED and NP metrics respectively. The MRE value was 
measured to be 21.63%, derived from class level metrics that reflect 
good model performance. The detailed report of MRE values are 
demonstrated in Table 12. 

4.3.2. Performance evaluation based on metrics at the landscape level 
Fig. 9 and Table 15 show the discrepancy at the landscape level, 

between the measured metrics and RE values for the outcomes of 
ST_Markov simulation model, mentioning to the simulated and refer-
ence maps. The ENN_MN metric showed the maximum variation be-
tween the results of the model and resultant classes in the reference layer 
(RE value underestimated as − 47.50%). Alternatively, the AREA_MN 
metric showed the minimum variation with the RE value of 44.31% 
difference from its true value. The average agreement was observed 
between the simulated and reference maps for NP, AREA_MN and ED 

Fig. 10. Differences between the CA_Markov based simulated and reference LULC categories.  
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metrics at the landscape level. The low agreement was observed be-
tween the simulated and reference maps for ENN_MN, LPI and LSI 
metrics at the landscape level. The MRE value was estimated to be 
45.75% at the landscape level, showing the weak performance of the ST- 
MC simulation model. 

Fig. 10 and Table 16 show the variations at the landscape level, 
between the measured metrics and RE values for CA_Markov model 
outcomes, mentioning to the simulated and reference maps. The LSI 
metric showed the maximum deviation between model results and 
resultant classes in the reference map having underestimated value of 

Fig. 11. Differences between the MLP_Markov based simulated and reference LULC categories.  

Table 6 
The values of RE and MRE for each LULC types and landscape metric at class level using ST_Markov simulation model.  

LULC type/ Landscape metric NP Area_MN CA ED ENN_MN LPI LSI MRELULC (%) 

Agriculture − 40.10 − 45.52 − 47.17 − 55.33  49.89  43.21 − 47.13  46.91 
Dense vegetation − 43.28 60.27 139.75 55.47  − 47.28  − 50.04 − 38.83  62.13 
Sparse vegetation 46.05 45.78 93.38 − 45.33  55.40  − 36.82 − 43.37  52.30 
Fallow land − 54.90 − 37.39 − 43.82 − 46.81  − 40.41  59.17 49.96  47.49 
Urban 48.24 − 39.03 95.32 50.28  − 47.18  − 42.46 62.48  55.00 
Water bodies 51.83 54.44 122.78 59.99  − 42.79  64.46 56.64  64.70 
Sand 88.93 − 52.39 83.93 − 30.98  − 45.90  − 53.16 57.37  58.95 
MREmetric (%) 53.33 47.83 89.45 49.17  46.98  49.90 50.83  55.36  
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RE is − 36.97%. Alternatively, the AREA_MN metric showed the mini-
mum variation with the RE value of 20.98% difference from its actual 
value. A good agreement was observed between the simulated and 
reference maps for NP, AREA_MN, and ED metrics at the landscape level. 

The average agreement was observed between the simulated and 
reference maps for ENN_MN, LPI, and LSI metrics at the landscape level. 
The MRE value was estimated to be 28.31% at the landscape level, 
showing the good performance of the CA_Markov simulation model. 

Table 7 
Rank of agreement at class level between the simulated and reference LULC maps using ST_Markov simulation model.  

LULC type/ Landscape metric NP Area_MN CA ED ENN_MN LPI LSI 

Agriculture Average Low Low Low Low Average Low 
Dense vegetation Average Low Low Low Low Low Average 
Sparse vegetation Low Low Low Low Low Average Average 
Fallow land Low Average Average Low Average Low Low 
Urban Low Average Low Low Low Average Low 
Water bodies Low Low Low Low Average Low Low 
Sand Low Low Low Average Average Low Low 
Agreementmetric Low Low Low Low Low Low Low  

Table 8 
Rank of the performance of ST_Markov simulation model for all LULC types and calculated landscape metrics at class level.  

LULC type/ Landscape metric NP Area_MN CA ED ENN_MN LPI LSI 

Agriculture Moderate Weak Weak Weak Weak Moderate Weak 
Dense vegetation Moderate Weak Weak Weak Weak Weak Moderate 
Sparse vegetation Weak Weak Weak Weak Weak Moderate Moderate 
Fallow land Weak Moderate Moderate Weak Moderate Weak Weak 
Urban Weak Moderate Weak Weak Weak Moderate Weak 
Water bodies Weak Weak Weak Weak Average Weak Weak 
Sand Weak Weak Weak Weak Average Weak Weak 
Model performancemetric Weak Weak Weak Weak Weak Weak Weak  

Table 9 
The values of RE and MRE for each LULC types and landscape metric at class level using CA_Markov simulation model.  

LULC type/ Landscape metric NP Area_MN CA ED ENN_MN LPI LSI MRELULC (%) 

Agriculture − 25.88 − 36.48  44.04 –33.10 –23.22  37.39 − 40.34  34.35 
Dense vegetation − 31.34 33.40  40.26 29.33 − 38.49  46.78 − 34.08  36.24 
Sparse vegetation 32.21 − 26.57  − 46.52 − 36.40 52.05  − 46.03 − 29.85  38.52 
Fallow land 33.03 − 37.90  47.37 54.21 − 46.80  48.85 42.59  44.39 
Urban − 18.73 22.25  –32.84 − 41.74 39.91  − 29.49 − 46.73  33.10 
Water bodies 32.61 41.95  49.14 48.48 − 31.60  49.53 48.46  43.11 
Sand 43.51 − 45.14  − 51.89 − 49.02 − 46.15  − 45.38 − 51.81  47.56 
MREmetric (%) 31.04 34.81  44.58 41.75 39.75  43.35 41.98  39.61  

Table 10 
Rank of agreement at class level between the simulated and reference LULC maps using CA_Markov simulation model.  

LULC type/ Landscape metric NP Area_MN CA ED ENN_MN LPI LSI 

Agriculture Good Average Average Average Good Average Average 
Dense vegetation Average Average Average Good Average Low Average 
Sparse vegetation Average Good Low Average Low Low Good 
Fallow land Average Average Low Low Low Low Average 
Urban Good Good Average Average Average Good Low 
Water bodies Average Average Low Low Average Low Low 
Sand Average Low Low Low Low Low Low 
Agreementmetric Average Average Average Average Average Average Average  

Table 11 
Rank of the performance of CA_Markov simulation model for all LULC types and calculated landscape metrics at class level.  

LULC type/ Landscape metric NP Area_MN CA ED ENN_MN LPI LSI 

Agriculture Good Moderate Moderate Moderate Good Moderate Moderate 
Dense vegetation Moderate Moderate Moderate Good Moderate Weak Moderate 
Sparse vegetation Moderate Good Weak Moderate Weak Weak Good 
Fallow land Moderate Moderate Weak Weak Weak Weak Moderate 
Urban Good Good Moderate Moderate Moderate Good Weak 
Water bodies Moderate Moderate Weak Weak Moderate Weak Weak 
Sand Moderate Weak Weak Weak Weak Weak Weak 
Model performancemetric Moderate Moderate Moderate Moderate Moderate Moderate Moderate  

A. Arora et al.                                                                                                                                                                                                                                   



Ecological Indicators 128 (2021) 107810

15

Table 12 
The values of RE and MRE for each LULC types and landscape metric at class level using MLP_Markov simulation model.  

LULC type/ Landscape metric NP Area_MN CA ED ENN_MN LPI LSI MRELULC (%) 

Agriculture − 16.79  13.87  12.59 − 15.33 − 17.55  19.22 − 14.71  15.72 
Dense vegetation –22.52  14.60  − 18.08 − 17.48 13.26  16.90 − 15.28  16.88 
Sparse vegetation − 27.62  19.27  − 29.66 − 13.04 18.94  20.40 –23.59  21.79 
Fallow land 33.63  − 25.37  − 20.84 –22.61 − 16.68  18.76 25.89  23.40 
Urban 13.30  − 10.91  17.71 11.83 − 15.00  − 15.30 19.32  14.77 
Water bodies − 35.68  33.03  22.99 26.26 –23.81  30.53 24.97  28.18 
Sand 40.08  –33.77  − 25.65 28.61 − 38.01  − 26.53 21.86  30.64 
MREmetric (%) 27.09  21.55  21.07 19.31 20.46  21.09 20.80  21.63  

Table 13 
Rank of agreement at class level between the simulated and reference LULC maps using MLP_Markov simulation model.  

LULC type/ Landscape metric NP Area_MN CA ED ENN_MN LPI LSI 

Agriculture Good High High Good Good Good Good 
Dense vegetation Good High Good Good High Good Good 
Sparse vegetation Good Good Good High Good Good Good 
Fallow land Average Good Good Good Good Good Good 
Urban High High Good High Good Good High 
Water bodies Average Average Good Good Good Average Good 
Sand Average Average Good Good Average Good Average 
Agreementmetric Good Good Good Good Good Good Good  

Table 14 
Rank of the performance of MLP_Markov simulation model for all LULC types and calculated landscape metrics at class level.  

LULC type/ Landscape metric NP Area_MN CA ED ENN_MN LPI LSI 

Agriculture Good Excellent Excellent Good Good Good Good 
Dense vegetation Good Excellent Good Good Excellent Good Good 
Sparse vegetation Good Good Good Excellent Good Good Good 
Fallow land Moderate Good Good Good Good Good Good 
Urban Excellent Excellent Good Excellent Good Good Excellent 
Water bodies Moderate Moderate Good Good Good Moderate Good 
Sand Moderate Moderate Good Good Moderate Good Moderate 
Model performancemetric Good Good Good Good Good Good Good  

Table 15 
Metrics value, RE, MRE of ST_Markov simulation model results and landscape level agreement for reference and simulated LULC maps.  

Metric/value NP AREA_MN ED ENN_MN LPI LSI MRElandscape level 

Reference layer 93,139 2.5631 115.7812 69.9383 38.7582 142.4188  
Simulated layer 56,457 3.6988 66.105 36.7205 59.5042 75.6857  
Relative error − 39.38 44.31 − 42.91 − 47.50 53.53 − 46.86 45.75 
Level of agreement Average Average Average Low Low Low  
Model performance Moderate Moderate Moderate Weak Weak Weak Weak  

Table 16 
Metrics value, RE, MRE of CA_Markov simulation model results and landscape level agreement for reference and simulated LULC maps.  

Metric/value NP AREA_MN ED ENN_MN LPI LSI MRElandscape level 

Reference layer 93,139 2.5631 115.7812 69.9383 38.7582 142.4188  
Simulated layer 70,889 3.1008 86.0104 48.9125 26.2508 89.7626  
Relative error –23.89 20.98 − 25.71 − 30.06 –32.27 − 36.97 28.31 
Level of agreement Good Good Good Average Average Average  
Model performance Good Good Good Moderate Moderate Moderate Good  

Table 17 
Metrics value, RE, MRE of MLP_Markov simulation model results and landscape level agreement for reference and simulated LULC maps.  

Metric/value NP AREA_MN ED ENN_MN LPI LSI MRElandscape level 

Reference layer 93,139 2.5631 115.7812 69.9383 38.7582 142.4188  
Simulated layer 80,756 2.9324 99.131 76.8525 44.4378 123.126  
Relative error − 13.30 14.41 − 14.38 9.89 14.65 − 13.55 11.45 
Level of agreement High High High High High High  
Model performance Excellent Excellent Excellent Excellent Excellent Excellent Excellent  
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Fig. 11 and Table 17 show the differences between the metrics and 
RE values measured at the landscape level for MLP_Markov model out-
comes, mentioning the simulated and reference maps. The LSI metric 
showed the maximum deviation between model results and resultant 
classes in the reference data with the underestimated RE value of −
13.55%. Alternatively, the ENN_MN metric showed the minimum vari-
ation having RE value of 9.89% from its actual value. A good agreement 
was observed between the simulated and reference maps for NP, 
AREA_MN, and ED metrics at the landscape level. The high agreement 
was observed between the simulated and reference maps for all the 
landscape level metrics. The MRE value was estimated to be 11.45% at 
the landscape level, showing excellent performance of the MLP-MC 
simulation model. 

5. Discussion 

The success and performance of simulation models merely based on 
quantity are unable to deliver information to the researchers with 
respect to spatial metrics and morphological features. For that, the 
spatially-explicit scheme is required to evaluate the performance of the 
spatially-explicit predictive models. In addition, this scheme is expected 
to provide information on model behavior. Hence this work proposed an 
advanced method based on the study of landscape pattern, for evalu-
ating the performance of the model. The proposed methodology exhibits 
a unique feature of landscape metrics in terms of its spatial composition 
that leads to the hierarchical and multi-level study of the performance of 
scenario-based spatial models. It also consented to quantify the success 
of the simulation process concerning the structure and patterns of 
landscape. The significant differences have also been illustrated between 
the performance of models at class and landscape levels. In the case of 
the MLP_Markov simulation model, the resultant MRE values are 
21.63% and 11.45% at class and landscape-level respectively. The final 
MRE value was 11.45% at the landscape level. This vital outcome 
demonstrated a source of synchronized investigation of model perfor-
mance at various levels. It may also be explicated with the help of 
calculation method and incorporation of supplementary information to 
investigate landscape pattern at the class level. The performance of 
MLP_Markov simulation model as per the results was found to be the 
best in comparison to other models used in this study. The performance 
of MLP_Markov model was high for urban class, good for sparse vege-
tation, and the average for sand at the class level. The performance of the 
MLP-MC simulation model was found to be excellent for all the metrics 
at the landscape level. 

The success of the MLP_Markov simulation model can be described as 
follows:  

1) During the simulation process, there is a trend of having higher NP 
for agriculture, sparse vegetation, dense vegetation and water 
bodies. Lower NP for fallow land, urban and sand categories.  

2) In the simulated maps, the shape of patches shown by LSI became 
simpler and larger in size for agriculture, sparse vegetation, and 
dense vegetation. Whereas smaller in size for fallow land, urban, 
water bodies and sand categories.  

3) Putting together the above-mentioned points, the model results are 
facile in opposition to the spatial pattern derived from actual LULC 
maps. 

4) Based on Tables 12 and 17, the performance of MLP_Markov simu-
lation model at the landscape level was found to be excellent in 
comparison to that of class level having good results.  

5) It is revealed that MLP_Markov model implemented well in the 
spatial simulation of LULC categories on the basis of an inclusive 
deliberation of the outcomes 

According to McGarigal et al. (2002) there is the availability of 
several measures at class and landscape levels which is vital to get an 
empirical relationship among these indices (CA, NP, Area_MN, ED, 

ENN_MN, LSI, and LPI) to develop a valuable better combination for 
evaluating the performance of simulation models. Therefore, it is useful 
to pick the nominal and more reliable set of metrics to recognize a set of 
structural elements that jointly depict key independent features of 
landscape successfully (Cushman et al., 2008). This study showed the 
effectiveness of various indices to discriminate the model performance 
at class and landscape levels. The patch size, shape and neighborhood of 
a LULC class characterize the model performance at the class level. An 
overall landscape heterogeneity, texture, is used to illustrate the success 
of the simulation model at the landscape level (Cushman et al., 2008). 
This type of analysis at class-level is of significance to distinguish be-
tween composition and pattern due to its conceptually diverse aspect of 
the landscape configuration (Fahrig, 2002). It is important to note that 
the selection of associated matrices might raise redundancy and 
generate overstated outcomes. Conversely, the omission of appropriate 
metrics will lead to the dimensionality reduction of landscape consti-
tution (Cushman et al., 2008). The behavior of landscape and research 
problems would be the basis for the selection of matrices. The metrics 
used in this study would not be adequate to incarcerate the complete 
characteristics of a specific study site. It is quite feasible that these 
universally attributed metrics might present consistently in other study 
regions. But still, the distinctive characteristics of a landscape structure 
may also require choosing particular metrics. 

This study also assessed the comparative simulation capabilities of 
MLP_Markov, CA_Markov, and ST_Markov integrated models from an 
ecological point of view. The result of the study pointed out that the 
integration of Markov with MLP performed best among the three, fol-
lowed by CA_Markov and ST_Markov models. This finding has signifi-
cant ecological implications for both: terrestrial as well as aquatic 
ecosystems (Trombulak and Frissell, 2000) as the changes in LULC is 
connected to various aspects of ecosystems. For instance, in the terres-
trial ecosystem, changes in forest cover over a period of time can be 
related to ‘concurrent species richness of bees and wasps’ as well as 
community composition which may lead to shift in pollinator commu-
nity (Tan et al., 2020). Similarly, the changes in water bodies like 
stream, lake, pond surface areas also have ecological implications (Allan 
and Flecker, 1993). For example, alteration in “hydrologic regimes and 
potential biological responses” due to expansion in impervious struc-
tures including pucca roads, rural and urban settlements, etc. lead to 
changes in characteristics of benthic and pelagic species’ habitat. The 
ratio of benthic to pelagic planktonic diatoms to land use changes has 
also been found to be correlated (Liu et al., 2020). Hence, the better 
performance of LULC simulation can be used for ranking the ecological 
indices linking interconnectedness of LULC changes and various 
ecological parameters (Prasad et al., 2010). 

The results procured through this study is found of very good accu-
racy, specifically for MLP_Markov model-based simulation on the 
focused region of interest. Having the same topography and geo- 
environmental condition of any region, this study can be a value addi-
tion work to conduct simulation-based research using utilized models. 
Further, the work can be compared with other models, especially 
ensemble based, to check the performance and accuracy of models and 
identification of better models among all on the present study area or on 
the other regions as well. The landscape metrics derived from thematic 
LULC maps are sensitive to geometric misregistration of inter-annual 
images and intrinsic uncertainties. The major sources of uncertainties 
are classification scheme, spatial scale, geometric misregistration, and 
classification error (Lechner et al., 2012). Additionally, inaccurate 
description of LULC classes is another cause of ambiguity in the classi-
fication method. The results of image classification will also be affected 
by different methods. In this study, moderate spatial resolution images 
of 30 m acquired from Landsat series satellites were used. These images 
were chosen because higher resolutions might needlessly add to data 
volume, and coarser resolutions can result in information loss. The 
resolution of thematic maps is dependent on the objectives and scale of 
the present work. 
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6. Conclusions 

Since the ecological diversity and its resilience is under constant 
challenge due to immense influx of regional, national, and international 
population, the spatio-temporal changes in the landscape of Varanasi 
district were evaluated based on LULC data for the years 1988, 2001, 
and 2015. The current study implemented a machine learning and sta-
tistical ensembles entwined through a diverse procedure to appraise and 
compare the performance of MLP_Markov, CA_Markov and ST_Markov 
land change simulation models, which is revealed by metrics calcula-
tions based on consequential RE values. In addition, the consequences of 
the scenario description on model performance are assessed with the 
help of landscape metrics and it aids to novelty of this work. The per-
formance of MLP_Markov model was found to be excellent with MRE 
value 11.45% at the landscape level. A comprehensive deliberation of 
the results of the integrated MLP_Markov model revealed its success in 
spatial simulation of landscape scenario. Assimilation of the driver 
variables supports as well to recognize the potential factors of LULC 
conversion during simulation process. This study highlighted that the 
urban expansion description from 1988 to 2001 is expected to persist as 
well in succeeding epoch (2001 to 2015) based on simulated results. A 
variety of metrics in different study areas can be used for selecting a 
most favorable and descriptive group of the metrics. So, there is also a 
possibility that other simulation models would oblige a diverse collec-
tion of metrics in different study regions. 

However, the accuracy of the simulation results is strongly connected 
to several factors. Primarily, the accuracy of LULC layers is undesirably 
affected by the moderate spatial resolution of the Landsat images that 
may lead to influence the reliability of simulated results. So, the images 
from high resolution sensors would be beneficial in simulating more 
reliable landscape scenarios. The inclusion of random variables, like 
government policies, socio-economic aspects, and biophysical parame-
ters is still a challenging task and hence, it needs to be explored in future 
studies. It is also of significant interest to explore the consequences of 
changing spatial scale on the performance of simulation models and 
their quantification through landscape metrics. 

The results can be of interest for researchers attempting to explore 
the effects of changing structures on a particular landscape function and 
project more realistic future scenarios. The results of the present study 
can also be used as input in studies exploring the effect of LULC changing 
scenarios on floral and faunal biodiversity and the area’s ecosystem 
resilience. 
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