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Abstract

In this study, a dynamically downscaled regional climate model (RegCM4.3) is

used to study the Indian summer monsoon (ISM) surface air temperature over

the South-Asia CORDEX domain using six convection schemes during 1986–

2010. The spatial and temporal variability of mean surface air temperature has

been analysed with reference to the India Meteorological Department (IMD)

analysis data using various statistical scores. The sensitivity experiments in

selecting the best convective parameterized schemes have been performed in

simulating the surface air temperature during the summer monsoon season

(June–September) over India and its five sub-regions such as Northwest India,

Northcentral India, West Peninsular India, Eastern Peninsular India, and

Southern Peninsular India. The model results show the tendency of over-

estimation of surface air temperature mainly in four cumulus parameterization

schemes (CPSs) that is, Tiedtke, Emanuel, Mix98, and Mix99 of RegCM4.3 dur-

ing the JJAS, where Grell and Kuo CPSs show better agreement with the IMD

data. Overall, Grell CPS has a close resemblance to the observation data with a

minimum root mean square error, mean absolute error, lowest mean absolute

percentage error (MAPE), and higher correlation coefficient. The model simu-

lated results have also been investigated further using modified Nash Sutcliffe

efficiency and modified Willmott's degree of index. These analyses confirm the

potentiality of the Grell CPS followed by the Kuo CPS in simulating

interannual variability of the surface air temperature over Indian and its five

sub-regions. The MAPE in Grell and Kuo CPSs are 0.004 and 0.013� C during

monsoon season over India, respectively. The inter-scheme difference in simu-

lating surface air temperature is linked with the generation of low cloud con-

vection and warming-induced atmospheric moisture advection in the schemes.

Therefore, Emanuel, Tiedtke, and Mix98 CPSs have shown a persistent nature
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of overestimation in surface air temperature variability during JJAS. It is also

inferred that after removing the systematic mean bias from the RegCM4.3

model simulated outputs; the skill of Emanuel, Mix98, and Mix99 could be use-

ful over the Indian subcontinent except for the southern peninsular region.

K E Y W O R D S

CPS, dynamical downscaling, low cloud cover, regional climate model, SASR, surface air
temperature

1 | INTRODUCTION

The temperature variability is known as the combined
effect of large-scale atmospheric circulation and small-
scale physical processes, such as long and short-wave
radiation, boundary layer turbulence, and soil process
that are responsible for generating latent and sensible
heat flux (Lenderink et al., 2007). The fifth assessment
report of the Intergovernmental Panel on Climate
Change (IPCC) has reported that warming of the global
surface air temperature is inevitable and has enhanced
since 1950's (IPCC, 2013). Sterlet al. (2008) have
simulated and projected the global mean surface
warming of 3.5� C by the end of the 21st century which
severely affects the densely populated areas like India
and the Middle East. The surface air temperature during
the monsoon season has been identified as a predictor
for the Indian summer monsoon rainfall (ISMR)
(Parthasarathyet al., 1990) and has an impact on agricul-
ture and public health. In India, warm weather condi-
tions are also observed during June and July, the surface
air temperature helps in developing the terrestrial heat
difference during the Indian summer monsoon (ISM).
During ISM, the terrestrial heat difference reinforces the
monsoon advancement over the large Indian subconti-
nent. Also, the land use land cover (LULC) change of any
region directly affects the monsoon convection and other
associated meteorological phenomena (Parthasarathy
et al., 1990). Therefore, the adequate understanding of
the spatio-temporal pattern of climate variability on the
regional scale is one of the most important challenges.
The surface air temperature is one of the key characteris-
tics of the climate system and is widely useful to measure
climate change on global and regional scales. These
smaller-scale physical processes are parameterized by
cloud, radiation, soil-moisture, and turbulence schemes
in atmospheric models. This physical parameterization
exerts strong control over the climate models that modu-
lates the temperature variability over the regional-to-local
scale (Giorgi, 2019). The Global Climate Models (GCMs)
are generally producing required climatic information in
the order of 100 km that have an inadequate skill in

representing regional/local topographic features and
mesoscale phenomena. In order to achieve seamless
regional climatic features, the necessity of Regional Cli-
mate Models (RCMs) is indispensable to downscale
dynamically and to simulate finer/regional scale climate
information from the driving GCMs or reanalysis data.

The fourth assessment report of IPCC (IPCC, 2007)
depicts that the accurate simulation and selection of
cloud convection are together able to reduce the uncer-
tainties in climate change prediction. Further, the fifth
assessment report of IPCC (IPCC, 2014) demonstrated
that the RCMs have the better skills than it is driving
GCMs for understanding and representing regional scale
climate.

The RCM RegCM has been widely used for the simu-
lation of weather and climate parameters over the vari-
ous parts of the world in the last two decades (Giorgi
et al., 2012). The RegCM has a satisfactory skill in simu-
lating the surface air temperature and precipitation over
Europe (Giorgi and Marinucci, 1996). The important
effect of the surface sub-grid scale over the Eurasian
region was represented better with the use of finer scale
model and the simulated temperature agreed well with
the observations (Giorgiet al., 2004). Previous studies
have shown that the high-resolution RCMs are the better
choices over the east-Asian region in simulating regional
and sub-regional features for climate change study (Gao
et al., 2001, 2008, 2012). Gaoet al. (2012) conducted high
resolutions RegCM3 simulations over the East Asia to
understand the uncertainty in the mean temperature and
precipitation changes during the Asian monsoon season
(May–September) for historical (1961–1990) and future
scenario (2071–2100). Another recent study of Shi
et al. (2018) highlighted the importance of the horizontal
resolution in RegCM4.4 to project future climate change
over China. The previous studied (Franciscoet al., 2006;
Pal et al., 2007; Dashet al., 2012; Adeniyi, 2014; Raju
et al., 2015; Bhatlaet al., 2018; Ghoshet al., 2019; Sinha
et al., 2019) address‘ the-state-of-art’ RegCM, which is
useful for dynamical downscaling of various climate pro-
cesses in predicting the regional to local scale climate.
Several studies have confirmed that downscaled GCM
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using the RegCM efficiently performs over the south-Asia
CORDEX in simulating various seasonal and sub-
seasonal phenomena related to the ISM (Ratnam
et al., 2008; Bhatlaet al., 2016; Nayaket al., 2017; Uma-
kanth et al., 2017). Dashet al. (2006) compared RegCM3
simulated temperature with NCEP/NCAR reanalysis data
for three-years over the south Asia (1993–1996). Another
experiment with future simulation using RegCM3 is used
for projecting the deviations in temperature and precipi-
tation under the A1B scenario over the north-east India
(Dashet al., 2012). In the study carried out by the (Sinha
et al., 2013; 2019), it is reported that the performance of
Kuo and Grell CPSs are better than the other schemes for
simulating ISMR. They have also reported that the
degrees of accuracy highly depend on the choice of CPS
and skill also varies region-to-region. Thus, the selection
of a best-fitting CPS in RCMs is essential because it cau-
ses the main source of error and has a significant impact
on the model performance (Palet al., 2007). The IPCC
report indicates that the addition of different cloud repre-
sentations could produce dramatic effects to double the
expected warming or to reduce it by half (IPCC, 1995). It
is justified the need of customization and sensitivity
experiments of RCM over a regional to sub-regional. This
study includes the sensitivity experiment of different
CPSs of RegCM4.3 over the Indian domain and its sub-
regions for simulation of the surface air temperature dur-
ing the climatological period (1986–2010). Further, the
accuracy of the surface air temperature simulation is sig-
nificant to infer the low-level wind circulation, low-level
cloud cover, and absorbed solar radiation at the surface
in model simulation (Zaniset al., 2009).

Therefore, the present study has examined the sensi-
tivity of different parameterization schemes of RegCM in
simulating the surface air temperature at 2 m height
(hereafter referred to as t2m) over India during the ISM.
It is noteworthy to evaluate the RegCM performance at a
regional scale and for this purpose, the model results
have been analysed for the different sub-regions of India.
The main objective of this study is to optimize the
RegCM model through the sensitivity experiments using
different CPSs for the skillful and seamless simulation of
t2m and its variability over India and its sub-regions.

2 | STUDY REGION AND MODEL
DESCRIPTION

2.1 | Study region

The region of importance in this study is the area
bounded by latitude 6–38� N and longitude 65–98� E
(Indian subcontinent and adjoining sea area). India,

located in south-Asia has a complex topography that con-
sists of four separate characteristics regions that is, the
high mountains, the wide plains, the plateaus, and
the vast desert which play an important role in modulat-
ing the local climate. The selected Indian domain is fur-
ther divided into five sub-regions as north-west India
(NWI), north-central India (NCI), west-Peninsular India
(WPI), eastern Peninsular India (EPI), and southern Pen-
insular India (SPI; Bhatlaet al., 2019, 2020). The experi-
ment was accompanied with the set of 25-year
simulations for the period of 1986–2010 during summer
monsoon season to find out the best fit CPS in RegCM4.3
model for the simulation of t2m over India and different
its sub-regions.

2.2 | Model description

The state-of-artregional scale model RegCM has added a
significant contribution to the scientific community in
the recent decades (Giorgi, 2006). In this study, a high-
resolution RegCM4.3 model with hydrostatic dynamical
core (Giorgi et al., 2012) has been used which is a stable
version of International Centre for Theoretical Physics
(ICTP) RegCM4 (Giorgiet al., 1993). The model domain
for the dynamically downscaling is selected as the south-
Asia CORDEX domain (22� S–50� N; 10� E–130� E) with
50 km horizontal resolution and 18 sigma vertical levels.
The model integration is carried out from 1st May to 30th
September for each year. The month of May is considered
as the spin-up period for the model simulation. The
detailed description of the model dynamics and parame-
terization is given in Table 1. The initial and lateral
boundary conditions (ICBC) are provided from the
European Centre for Medium-Range Weather Forecast's
(ECMWF's) third-generation ERA Interim reanalysis.
The ERA-Interim data were used with grid coordinate
are longitude: 0–358.5 by 1.5� east circular and latitude:
90 to � 90 by � 1.5� north (i.e., horizontal resolutions of
1.5� × 1.5� ) and 37 vertical pressure level (1–1,000 mb;
Simmons et al., 2007; Berrisford et al., 2011; Dee
et al., 2011). The sea surface temperature (SST) is forced
from the National Oceanic and Atmospheric Administra-
tion (NOAA) weekly Optimum Interpolation Sea Surface
Temperature (OISST) with 1

�

× 1
�

resolution (Reynolds
et al., 2007) during the model run. The Holtslag scheme
(Holtslag et al., 1990) is used as planetary boundary layer
schemes. The radiation scheme is used from the National
Center for Atmospheric Research (NCAR) community
climate model version 3 (CCM3) (Kiehlet al., 1996) and
Biosphere-Atmosphere Scheme (BATS) is provided as the
land surface parameterization by Dickinsonet al. (1993).
The sub-grid explicit moisture scheme (SUBEX) is used
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for the large-scale precipitation scheme (Palet al., 2000).
SUBEX accounts for the sub-grid variability in clouds by
linking the average grid cell relative humidity to the
cloud fraction and cloud water given by Sundqvist
et al. (1989). It includes the simple formulation for rain-
drop accretion of cloud droplets by falling rain droplets
and evaporation (Beheng, 1994). In RegCM4.3, four CPSs
namely Kuo, Grell with closure assumption of Arakawa
and Schubert (AS74) (Arakawa and Schubert, 1974),
Emanuel, and Tiedtke are available and the same is men-
tioned in Table 1. The simplified version of Kuo scheme
is based on the convective adjustment. The convection
process in this scheme activated when the moisture con-
vergence in a column surpasses a threshold value and the
vertical sounding is convectively unstable (Anthes, 1977).
The Grell with closure assumption of AS74, Emanuel,
and Tiedtke CPS are mass flux based parameterization
schemes. The mostly used Grell CPS is a uniform mass
flux deep convection parameterization scheme
(Grell, 1993). In this scheme, clouds are accompanied
with two steady state circulation that is, an updraft and a
downdraft. The entrainment or detrainment in this
scheme based on cloud radius and only happened at

bottom and top layer of the cloud (or no direct mixing of
cloudy air and environmental air through the edge of the
column). The Grell CPS with the AS74 type closure
directly implements the quasi-equilibrium assumption of
AS, it shows all buoyant energy is immediately released
at each time step. The Grell scheme is usually represent a
single type cloud that is, shallow cumulus parameteriza-
tion which activate when a lifted parcel attains moist
convection. The Emanuel CPS is advanced mass flux CPS
which assumes that the mixing in the cloud is highly epi-
sodic and inhomogeneous which based on an idealized
model of sub cloud scale updraft and downdraft
(Emanuel, 1991). The scheme is activated when the level
of neutral buoyancy is greater than the cloud base level,
between these two levels air is lifted and a fraction of
condense moisture form the precipitation and remaining
form the cloud which assume to mix with the environ-
mental air. The fraction of total cloud base mass flux that
mixes with the environment at each level is proportional
to the undiluted buoyancy rate of exchange with altitude.
The Tiedtke is based on the mass flux and moisture con-
vergence closure (Tiedtke, 1989). This scheme estimates
cloud base mass flux from an equilibrium assumption on
either moisture (for deep convection) or moist static
energy (for shallow convection) integrated over the sub-
cloud layer. In addition, two mixed convection schemes
termed as Mix98 (Emanuel over land and Grell over the
ocean) and Mix99 (Grell over land and Emanuel over
the ocean) have been used to simulate summer monsoon
t2m over India and its sub regions.

3 | METHODOLOGY

The performance of RegCM4.3 in simulating t2m has
been validated with respect to observed gridded tempera-
ture analysis data of IMD with the resolution of
0.5� × 0.5� (Srivastavaet al., 2009). In order to evaluate
the model performance over India and its sub-regions
during 1986–2015, various statistical methods have been
used for performance validation (Table 2). The correla-
tion coefficient (r), standard deviation (SD), and coeffi-
cient of variation (CV) of the model simulation from the
observation data have been evaluated. For the associated
bias and error estimation, four methods have been con-
sidered that is, mean bias (MB), mean absolute percent-
age error (MAPE), root mean square error (RMSE), and
mean absolute error (MAE). MB focuses on the average
tendency of the model simulated value which could be
positive or negative with respect to the observation data.
Its low magnitude values demonstrate the precise model
simulation with observation. The positive (negative) MB
values specify the overestimation (underestimation) of

T A B L E 1 Model (RegCM4.3) description

Dynamics Hydrostatics

Model domain South Asia CORDEX domain (22� S–
50� N; 10� E–130� E)

Resolution 50 km horizontal and 18 sigma
vertical levels

Initial and boundary
conditions

ECMWF ERA Interim reanalysis
(Simmonset al. 2007; Berrisfordet
al. 2011; Deeet al. 2011)

SST NOAA Weekly optimal
interpolation SST (OISST;
Reynoldset al. 2007)

Radiation scheme NCAR CCM3 (Community Climate
Model 3; Kiehl et al. 1996)

Land surface model Biosphere-Atmosphere Scheme
(BATS; Dickinsonet al. 1993)

Planetary boundary
layer scheme

Holtslag (Holtslaget al. 1990).

Large-scale precipitation
scheme

Subgrid explicit moisture scheme
(SUBEX) Sundqvistet al. (1989)
and Beheng (1994)

Convective precipitation
scheme

1. Kuo
2. Emanuel
3. Grell
4. Tiedtke
5. Emanuel over land; Grell over

ocean (Mix98)
6. Emanuel over ocean; Grell over

land (Mix99)
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model performance. The MAPE is a widely used method
to measure the accuracy of the model forecast. It is an
average of absolute percentage error which is scaled inde-
pendent and easy to interpret. The RMSE specifies a per-
fect match between the observation and model
simulation when the score shows equal to zero, and
increasing RMSE value indicates the poor model perfor-
mance. The MAE is preferable than RMSE because of the
deviation based on the absolute value of differences and
is preferable than the squared differences (Willmott and -
Matsuura, 2005; Willmott et al., 2009). The Willmott's
modified degree of index (MD) and modified Nash
Sutcliffe efficiency (mNSE) are the most useful statistical
approaches to measure the model skill when compared
with observation. The Nash Sutcliffe efficiency (NSE;
Nash and Sutcliffe, 1970) is a normalized dimensionless
statistical index that shows the agreement between model
simulations from observation. The NSE is sensitive to the
extreme value and it might have shown the sub-optimal
results. Therefore, the modified version of NSE (mNSE)
is less sensitive to substantial over and under prediction
than the squared forms. The Wilmott's degree of index
proposed by Willmott (1981) is a standardized measure-
ment of the degree of index of model prediction/simula-
tion which varies between 0 (perfect model performance)
and 1 (poor model performance). However, Wilmott's
degree of index is sensitive to extreme values due to the
squared differences (Legates and McCabe Jr., 1999).
That's why, Willmott et al. (1985) suggested a new MD
that was constructed upon sum of the absolute values of
the errors. For the verification purpose, the nonparamet-
ric statistical technique Empirical Cumulative Distribu-
tion Function (ECDF) is adopted and used in the present
study. The empirical distribution function is an estimate
of the cumulative distribution function (CDF) that gener-
ates the points in the sample. It is a step function that

increases by 1/n at the value of each ordered data point.
The ECDF defined for observationx = (x1,x2, …xn), Fn is
the fraction of observations less or equal tot,

Fn tð Þ=
no:of elements in the sample� t

n
=

1
n

Xn

i = 1

1 xi � t½ �,

The ECDF approach is providing a more reliable esti-
mate of uncertainty and confidence interval (Hoffman
et al., 2017).

Additionally, the systematic bias in the model simula-
tion has been removed using thelinear scaling factor
technique (Teutschbein and Seibert, 2012). In this
method, a correction factor (CF) is calculated based on
the difference between monthly observation and raw
model simulated data. Then, CF has been added to the
simulated climate data to obtain bias corrected
(BC) model simulated data. To evaluate the model perfor-
mance in term of spatial variability and correlation coeffi-
cient between model and observation; a uniqueskill score
(SS) is applied between model simulation and observa-
tion (Zou et al., 2014). The minimum/lowest values of SS
signify the best fit model simulation from the
observation.

4 | RESULTS AND DISCUSSIONS

The results and discussions are presented in three sub-
sections to understand the spatial distribution and varia-
tion of t2m, verification and validation of spatial distribu-
tion of t2m, and temporal variation of t2m and
verification of the model results. The model results are
also verified through standard statistical analysis and
included in the respective subsection.

T A B L E 2 Model performance goodness of fit statistics

S.no. Method Formula Range References

1. Root mean square error (RMSE) RMSE=
�������������������������������
1
N � N

i = 1 Si � Oið Þ2
q

— —

2. Mean absolute error (MAE) MAE= � N
i = 1 Oi � Sij j

N
— —

3. Mean absolute percentage error (MAPE) MAPE= 100× 1
N � N

i = 1
Si � Oið Þ

Oið Þ

�
�
�

�
�
� — —

4. Modified index of agreement (MD) MD= 1� � N
i= 1 Oi � Sij j

� N
i = 1 Si � �Oj j + Oi � �Oj j

0 � md � 1 Willmott (1981) and
Willmott et al. (1985)

5. Modified Nash-Sutcliffe efficiency (mNSE) mNSE= 1� � N
i = 1 Si � Oij j

� N
i = 1 Oi � �Oj j

�� < NSE<1 (Nash and Sutcliffe (1970)

6. Skill Score (SS)
SS= log

4 � o
� sð + � s

� oÞ
2

� �

1+ rð Þ4

� �
— Zou et al. (2014)

Note:WhereN is the total sets of model data or observed data;O and Sare the observation and model data, respectively;Oi and Si are the average values of
model data and observation data, respectively.� o and � s are standard deviations of observation and model and r is the correlation coefficient between them.
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4.1 | Spatial variation and distribution
of surface air temperature over Indian
sub-regions during monsoon season

The spatial variability of t2m has been studied over India
and its different sub-regions viz NWI, NCI, WPI, EPI,
and SPI during 1986–2010 as shown in Figure 1a–g. The
observed t2m (Figure 1a) shows that the higher values
persist over the NWI region and Indo Gangetic belt.
These zones are very important for the formation of low-
pressure system which plays a vital role in building-up
the monsoonal trough by strengthening the circulation
over India (Parthasarathyet al., 1990). The t2m distribu-
tion over India during ISM season is well simulated by
the three CPSs namely Kuo, Grell, and Mix99. By ana-
lysing the model statistics, the least MAPE of ~0.004 has
been noticed in Grell scheme followed by Kuo CPS
(~0.013) (Table 3). The analysis of Figure 1c–e depicts
that the remaining three CPSs that is, Tiedtke, Emanuel,
and Mix98 overestimate the seasonal (JJAS) t2m climatol-
ogy over India with the highest MAPE of 1.194, 1.029,
and 0.761, respectively. The positive MB in simulating
t2m is mainly observed over the northern, NWI, and NEI
regions. The horizontal advection and local surface flux
are more important to simulate the regional t2m in a
mesoscale model (MM5) (Singhet al., 2011) and the
RegCM4.3 has the similar dynamical core as of MM5.

The overall analysis shows that the performance of the
Grell scheme is better among all the available CPSs in
RegCM4.3 in simulating spatial variability of t2m during
ISM season over India.

The spatial correlation and MB of t2m in RegCM4.3
simulation with the IMD gridded data during the clima-
tological period (1986–2010) are displayed in Figure 2a–f.
The Kuo CPS has a negative MB of t2m of 1–2� C over the
NWI, WPI, and SPI (Figure 2a). The highest negative MB
is seen over mountainous region of north India and NEI
in the range of 8–9� C. A large area of NCI, Western
Ghats, and EPI regions clearly depict a positive MB

F I G U R E 1 The spatial distribution of mean surface air temperature (� C) climatology consider for the 25-year time period (1986–2010)
during the monsoon season obtained from (a) IMD 0.5o× 0.5o gridded dataset, and compared with the simulation of six different convection
schemes of RegCM4.3: (b) Kuo, (c) Tiedtke, (d) Mix98, (e) Emanuel, (f) Grell, and (g) Mix99. In this figure solid blue box represent the
selected subregions over the Indian subcontinent viz; Northwest India (NWI); Northcentral India (NCI); West Peninsular India (WPI);
Eastern Peninsular India (EPI); and Southern Peninsular India (SPI) [Colour figure can be viewed at wileyonlinelibrary.com]

T A B L E 3 Average surface air temperature and mean absolute
percentage error (MAPE) of observed and model simulation over
India

Experiment Surface air temperature ( � C) MAPE

Observed (IMD) 28.08

Kuo 27.99 0.013

Grell 28.06 0.004

Emanuel 35.31 1.029

Tiedtke 36.47 1.194

Mix98 33.43 0.761

Mix99 30.82 0.389
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(2–3� C) using the Kuo CPS compared to the observaions.
The spatial correlation between model simulated t2m
(using Kuo CPS) and observation has been noticed of
about 0.5 over the NCI and EPI regions (Figure 2a). The
spatial MB with Tiedtke CPS shows a maximum positive
MB (more than 10� C) and the maximum spatial correla-
tion over the southern Indian regions, while it shows a neg-
ative MB of 1–2� C over the Himalayan region and upper
part of the NEI region (Figure 2b). The spatial pattern of cli-
matological MB and spatial correlation are similar in Mix98
and Emanuel CPSs (Figure 2c,d). In both the CPSs, the pos-
itive MB is within the range of 9–10� C that covering the
whole part of northern India (except the Himalayan region)
and EPI regions. Over the SPI, the CPSs Mix98, Kuo, and
Emanuel have performed better with lesser MB and higher
spatial correlation. In Figure 2e, the model simulated (using
Grell CPS) t2m is illustrating the least MB within the range
of � 2 to 2� C during the climatology period. Further, it can
be noticed that the MB pattern in Grell CPS is very similar
to Kuo CPS. The CPS Mix99 has shown a maximum posi-
tive MB over the northern regions (6–8� C) excluding the
Himalayan region and the upper part of NEI region
(Figure 2f). It has been represented that the over southern
part of India Mix99 CPS shows better spatial correlation
than Northern India.

The spatial distribution of t2m during the summer
monsoon months can be seen in Figures 3–6. The
observed climatology of t2m (1986–2010) during
the month of June (Figure 3a–g) shows that maximum
heating is within the range ~26–35� C over the entire
country and a comparatively lower value is noticed over

the WPI, upper Himalaya, and NEI regions. The model
simulation shows that the Kuo and Grell both are well in
defining the t2m simulation as compared to the observa-
tion. On the other hand, Tiedtke, Emanuel, Mix98, and
Mix99 CPSs are overestimating the surface heating by
10–12� C. A study, based on the nine RCM temperature
simulations over the European region highlights the
overestimation of temperature, in terms of the surface
energy budget (Lenderinket al., 2007). This study also
revealed that the phenomena of short-wave radiation and
evaporation are dominated in RCMs.

Further, during the peak monsoon months (July and
August) the summer monsoon propagates to central
India and as a result, the t2m reduces over the region
(Figures 4 and 5). Observation shows that the t2m during
the peak monsoon varies from 11 to 32� C over the coun-
try. The maximum t2m is around 30� C over the Gangetic
plain, NWI and NCI regions while the minimum t2m
over WPI and SPI regions has been observed between
11 and 20� C during the peak monsoon months (July and
August). Overestimation of t2m is still dominant in the
Tiedtke, Emanuel, and Mix98 CPSs. During July and
August, the performance of Kuo and Grell is better than
other considered CPSs. During the month of September,
the spatial distribution of observation t2m is maximum
(~26–32� C) over the Gangetic plain, Eastern Ghats,
Rajasthan, and Gujarat regions while a minimum t2m
(~16–22� C) has been observed over the Himalayan
region. Further, the distribution of t2m shows the range
22–26� C and 26–28� C over the Western Ghats and the
central plateau region, respectively (Figure 6a). By

F I G U R E 2 The spatial mean
bias (shaded) and correlation
coefficient (contour) of surface air
temperature (� C) climatology in
RegCM4.3 simulation from the
observation (obs) (IMD 0.5o× 0.5o
gridded dataset) (a) Kuo-obs,
(b) Tiedtke-obs, (c) Mix98-obs,
(d) Emanuel-obs, (e) Grell-obs, and
(f) Mix99-obs consider for the 25-year
time period (1986–2010) during the
monsoon season [Colour figure can
be viewed at wileyonlinelibrary.com]
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investigating Figure 6b–g it is depicted that the spatio-
temporal distribution of t2m over various regions of India
is well simulated by Kuo and Grell while other CPSs are
showing overestimation.

The spatial distribution of monthly MB of t2m (� C)
of RegCM4.3 simulation from the observations has
been plotted in Figure 7 for the climatological period
1986–2010. The MB of different CPSs from the IMD
data shows the spatial variability during June, July,
August, and September months. With respect to the

observations, Kuo and Grell CPSs have shown the MB
within the range of � 3 to 3� C over different regions of
India. During the month of September, a positive MB is
seen in the model simulation over the central India
and its adjoining regions. The Tiedtke CPS has shown
the maximum positive MB over the northern India and
Western Ghat regions which is more than 10� C during
all the months of JJAS. The Mix98 and Emanuel have
depicted high positive MB over the northern India
(including NWI) and EPI regions. The reason behind

F I G U R E 3 Same as Figure 1 but shown for the month of June [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E 4 Same as Figure 1 but shown for the month of July [Colour figure can be viewed at wileyonlinelibrary.com]
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the high warm MB in t2m can be explained with the
concept of the physical parameterization of the CPSs
(Tiedtke and Emanuel) which are based on the
warming-induced atmospheric moisture advection.
The ability to induce the stronger and deep convection
by the advanced CPSs (Emanuel and Tiedtke) tends to
dry the atmosphere utilizing convective precipitation.
This eventually leads to minimize low-cloud and pro-
duces more surface absorbedsolar radiation (or surface
warming). Thus, these CPSs are representing high

warm MB over the monsoon precipitation zones of
India. The CPS Mix99 could be considered as the third
best scheme in simulating t2m over the Indian domain.
The positive MB (3–6� C) in the Mix99 CPS has been
observed during September. The mean monthly nega-
tive MB is observed over the Himalayan region along
with the upper part of NEI. The regional characteriza-
tion and spatial variability of model MB elucidate the
effect of topography, selection of CPSs on simulation of
monsoon t2m.

F I G U R E 5 Same as Figure 1 but shown for the month of August [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E 6 Same as Figure 1 but shown for the month of September [Colour figure can be viewed at wileyonlinelibrary.com]
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Further, the inter comparisons and validations
among schemes for t2m simulation have been carried
out over different sub-regions of India during the
summer monsoon. Figure 8a–e represents the t2m dis-
tribution over five sub-regions that is, NWI, NCI,
WPI, EPI, and SPI during June, July, August,
September, and JJAS period (1986–2010). The model
simulated t2m shows a fair estimation in the spatial
distribution when Kuo and Grell CPSs are used
(Figure 8a). On the other hand, simulation with
Emanuel, Tiedtke, Mix98, and Mix99 overestimate
over the NWI region. Over the NCI region, the
observed t2m is distributedconsistently in the range
of 20–30� C during the month of July, August, and
September whereas during the month of June t2m is

in the range of 30–40� C. The model simulation over
the region NCI is the best simulated by the Kuo and
Grell CPSs. Again, Emanuel, Tiedtke, and Mix98 CPSs
overestimate the t2m by 10–15� C. The model simu-
lated t2m over region of WPI and EPI is evenly dis-
tributed in the range of 20–30� C by Kuo, Grell, and
Mix99 CPSs when compared to the IMD observations.
On the other hand, Emanuel, Tiedtke, and Mix98
CPSs overestimated the temperature value by 10–
20� C. The model simulation was showing the maxi-
mum variability in t2m with the average of 26–28� C
temperature over the SPI region (Figure 8e). The
Mix98 scheme is performing well over the SPI region
during all the monsoon months. The Kuo and Grell
CPSs which have been performed well over NWI,

F I G U R E 7 The spatial mean bias of surface air temperature (� C) of RegCM4.3 simulation from the observation (obs) (IMD 0.5o× 0.5o
gridded dataset) during June, July, August, September (a) Kuo-obs, (b) Tiedtke-obs, (c) Mix98-obs, (d) Emanuel-obs, (e) Grell-obs, and (f)
Mix99-obs during 1986–2010 [Colour figure can be viewed at wileyonlinelibrary.com]
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NCI, WPI, and EPI regions; have shown negative MB
that is, underestimating over the SPI region. The
other schemes viz Emanuel, Tiedtke, and Mix99 over-
estimated the results over the same region.

It is a complex task to estimate a good agreement
between the model simulations and observations. Some-
times, introducing a new parameterization improves the
model performance over one region but at the same time,
the performance of the respective CPS may be worse over
the other regions. Therefore, a better way to describe the
agreement is to choose the single field such as t2m and
analyse the performance of each scheme using various
validation techniques (Table 2).

4.2 | Validation and verification of
RegCM4.3

The climate model evaluation (validation and verifica-
tion) is indeed necessary to represent the pattern and var-
iability of past climate behaviour of observation data for
future projections. For the validation purpose, the model
correlation coefficient and SD with respect to (w.r.t) the
observation data have been evaluated. Also, four methods

have been applied that is, MB, MAPE, RMSE, and MAE
to estimate the associated biases and errors (Tables 3 and
4). The Wilmott's MD and mNSE are used to compare
the RCM simulations w.r.t. the observations data. Fur-
ther, boxplot of t2m distribution has also been plotted for
the seasonal summer monsoon period and the sub-
regions considered in this study (Figure 9a–e). The simu-
lated t2m has been verified using ECDF plots in which
CDF distributes the data from lowest to highest values
and shows the best-fitted distribution line. If the fitted
line of observation and model data lies closely then the
data fits the distribution very well. The ECDF value of
Kuo and Grell are lying close to the line of observation
over the NWI region (Figure 9a[i]). The NWI and WPI
regions are well documented as the high impact regions
for heat waves in the past climate and are causing thou-
sands loss of lives (Paiet al., 2013; Oldenborgh
et al., 2018). Hence, the accurate simulation and predic-
tion of t2m change helps to analysis the causes, fre-
quency, and severity of extreme weather events. The
median value of Kuo and Grell simulated t2m are closer
to the observation over NWI region, but data distribution
is much wider than observation (Figure 9a[ii]). Over
NCI, the ECDF curve of Kuo and Grell are following

JJAS
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August
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NWI

0–10 10–20 20–30 30–40 40–50

JJAS

June

July

August
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NCI

0–10 10–20 20–30 30–40 40–50

JJAS
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August

September

WPI

0–10 10–20 20–30 30–40

JJAS

June

July

August

September

EPI

0–10 10–20 20–30 30–40

JJAS

June

July

August

September

SPI

22–24 24–26 26–28 28–30 30–32

(a)

(d) (e)

(b) (c)

F I G U R E 8 (a—e) The regional distribution of mean surface air temperature (� C) simulated by six CPSs of RegCM4.3 with respect to
summer monsoon months. Above mentioned rows: JJAS (average June–September), June, July, August, and September; Column: IMD, Kuo,
Grell, Emanuel, Tiedtke, Mix98, and Mix99 [Colour figure can be viewed at wileyonlinelibrary.com]
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close to the IMD distribution (observations) compared
with the rest of CPSs (Figure 9b[iii]). It is also depicted
that the model simulation using Kuo and Grell CPSs are
overestimated by 3–4� C in the case of the maximum t2m.
So, the best fitted CPS based on ECDF and box is Kuo
scheme, followed by the Grell scheme over WPI region
(Figure 9c[i]). On the other hand, CPSs Emanuel,
Tiedtke, and both the mixed schemes have overestimated
the observation t2m (Figure 9c[ii]). The ECDF and
boxplot over the EPI region have shown that the 40%
data is well simulated by the Kuo and Grell whereas the
rest of CPSs of the model are overestimating the observa-
tion (Figure 9d[iii]). Generally, seamless simulation of a
RCM crucially dependent on the surface field such as sur-
face temperature, pressure, and precipitation which are
closely related to the orography (Karet al., 2012; Zhou
et al., 2013). Therefore, the complex orography of western
Ghat causes difficulty in seamless simulation of RCM. In
this complex region, the performance of Kuo and Grell
CPSs are underestimating the temperature by 1–2� C
(Figure 9e–i). Also, the distribution plots such as surface
plot and boxplot are proving the similar results using the
best CPS for SPI (Figure 9e[ii]).

The present analysis provides a detail description of
validation statistics of t2m over different sub-regions for
each months of monsoon season and placed in
Figure 10a–e. The least MB and RMSE values are� 1.01
and 2.68 with the use of Kuo and Grell CPSs during the
month of June, respectively (Figure 10a). The SD values
shown by Emanuel, Mix98, and Tiedtke CPS are close to
the IMD observation but these CPSs and are showing
high values of RMSE and MB during the study period. In
Figure 10a, the least negative MB (between� 1.4 and
� 0.75) has been observed during July and August using
Kuo and Grell CPSs, while other CPSs have shown a
large positive MB associated with the high RMSE values.
During the month of September, Kuo and Grell both
CPSs have shown a positive MB (1.23 and 1.73, respec-
tively) with least RMSE values (2.16 and 2.40,
respectively) over NWI region. It has been noticed that
those CPSs, which have shown the high RMSE and MB,
are eventually produced SD close to the observation. It is
demonstrated that all the CPSs of RegCM4.3 are showing
least positive MB in Kuo simulation followed by Grell
CPS during the month of June, July, August, and
September over NCI (Figure 10b). Moving further, in the
months June, July, August and September the negative
MB in the range� 1.6 to� 0.4 has been noticed using Kuo
and Grell CPSs, over WPI region (Figure 10c). Over the
EPI region, the Grell CPS shows the least negative MB
than Kuo CPS, and SD was in the same range throughout
the monsoon months except for September (Figure 10d).
The Emanuel, Tiedtke, Mix98, and Mix99 CPSs haveT
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shown high RMSE values at the same time. In
Figure 10e, among all the considered CPSs of RegCM4.3
in simulating t2m over SPI region, Grell scheme has
shown the minimum MB during all summer monsoon
months.

The Taylor diagram is plotted to compare the perfor-
mance of different CPSs in RegCM4.3 w.r.t the observa-
tion in terms of centred RMSE,r, and SD (Taylor, 2001;
Figure 11a–f). This diagram does not include information
about the MB between observation and model

F I G U R E 9 (a—e) The empirical cumulative distribution function (ECDF) plot and boxplot of mean surface air temperature (� C) during
JJAS over Indian sub-regions during 1986–2010 [Colour figure can be viewed at wileyonlinelibrary.com]
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simulation, whereas it is completely characterized with
the centred pattern error. From the Taylor diagram, it
can be quantified that the Emanuel and Mix98 CPSs sim-
ulate the t2m pattern closer to the observation over the
NWI region. But the spatial variability of t2m is better

explained with the Kuo CPS with a SD of 1.7� C compared
to the observation data (IMD) value of 1.83� C. Over the
NCI region, Mix98 and Kuo CPS simulated results are
closer to the observations. The model simulation using
Mix99 CPS shows similar SD and maximum correlation
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F I G U R E 1 0 (a—e) RMSE, SD and bias value of average surface air temperature (� C) over different sub-regions during June, July,
August, and September (1986–2010) [Colour figure can be viewed at wileyonlinelibrary.com]

14 VERMA ET AL.

http://wileyonlinelibrary.com


(~.9) compared with the observation data over WPI
region. Over WPI, Taylor diagram inferred the most suit-
able CPS as Kuo followed by Grell and Mix99. The model
simulation of t2m over the SPI has shown the highest
spatial variability and minimum correlation with

observation. The spatial and temporal behaviour of sur-
face temperature over India and its different meteorologi-
cal sub-zones are very complex and unique. So that, the
simulation of monsoon rainfall with the six CPS of
RegCM4.3 is dependent on the homogeneity of the

F I G U R E 1 1 (a–e) The Taylor diagram of RegCM4.3 simulations for mean surface air temperature over India and its different sub
regions (1986–2010) [Colour figure can be viewed at wileyonlinelibrary.com]
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climate and topography that's why no single convective
parameterization scheme can perform best. During
southwest monsoon southern peninsular experiencing
the influence of stronger south-westerlies in lower mid-
tropospheric level these atmospheric phenomena also
coupled with the orographic effect of the western Ghat.
Thus, during the summer monsoon model CPS are trying
to simulate the stronger and deep convection processes
over the complex topography of SPI but eventually, it
affects the simulation of surface temperature by the
known phenomenon of surface warming also termed as a
‘positive feedback mechanism’ (or thermal convection)
that is, generating low clouds thus affecting the surface
energy balance (Zaniset al., 2009). This will be the possi-
ble reason behind all the model CPS is showing maxi-
mum RMSE and absolute error over the SPI region.
Figure 11(f) is showing Taylor diagram of model simu-
lated t2m for all India in which Emanuel, Mix98 and
Mix99 showing the maximum correlation (~.9) and least
centred RMS. All the available CPSs were showing the
centred RMS in the range of 0.7–0.83� C. On the other
hand, Grell and Kuo are showing significant high correla-
tion in which the SD value is close to the observation. In
RegCM4.3, Emanuel and Tiedtke CPSs have shown
warm bias (positive MB) in simulating the t2m which is
about 10� C, and high RMSE value as compared to the
observation IMD dataset. Although, with the help Taylor
diagram it could be inferred that the performance of
Emanuel, Mix98 and Mix99 could be considered over the
Indian subcontinent except the southern peninsular
region after removing the systematic MB in the model
simulation.

Table 4 depicts the value of efficiency of model simu-
lation with validation statistics parameter that is, MB,
MAE, RMSE, mNSE, and MD with respect to the obser-
vation (IMD) t2m during 1986–2010. The t2m validation
statistics vary over five sub-regions viz NWI, NCI, WPI,
EPI, and SPI regions with respect to the different consid-
ered CPSs of RegCM4.3. The error estimation using MAE
and RMSE shows lowest values (1.1 and 1.2, respectively)
using the Kuo CPS over NWI region during ISM season,
whereas the lowest MB is observed in the Grell CPS sim-
ulation (� 0.4). Over the NCI region, lowest MB, MAE
and RMSE have been observed in the Kuo simulation
where the skills are 1.4, 1.4, and 1.7, respectively. The
above analysis implies consistency in the model simula-
tion with MB 0.4 to 1.6 over the northern plain. The MB,
MAE, and RMSE remain high in Emanuel and Tiedtke
and the ranges are 10–13� C. The model simulation is
showing negative MB using Kuo and Grell CPSs (� 0.8
and � 0.6) with least RMSE and MAE over WPI region.
The EPI region is also showing the least MB with Grell
(0.3) followed by Kuo CPS (0.4). Over the EPI region,

average surface warming simulated by the Tiedtke and
Emanuel CPS are suppressed by 3–4� C as compared to
the northern region of India. The lowest value of MB,
MAE and RMSE are observed using Mix98 simulation
over the SPI region where the statistical measurements
are 0.7, 0.7, and 0.8, respectively. The Kuo and Grell CPSs
are showing negative bias and the Mix99 scheme is indi-
cating warm bias (positive MB) with 1.1� C compared to
the observations over the SPI region. The overestimations
in the t2m simulation by Emanuel, Tiedtke and Mix98
CPSs have been diminished over SPI regions. The value
of mNSE and MD are important for comparing the model
simulation efficiency with the observation climatology.
Based on the mNSE and MD, the Kuo and Grell CPSs are
showing good skills over NWI, NCI, WPI, and EPI
regions. However, the Mix98 and Grell scheme show sim-
ilar performance in MD and mNSE (i.e., 0.4 and� 0.5,
respectively) over the SPI region.

4.3 | Temporal variation of t2m over
different sub-region of India

The capability of RegCM4.3 to simulate the temporal var-
iability of t2m is explained over different sub-regions dur-
ing 1986–2010 using six different CPSs available in the
RegCM4.3 (Figure 12a–e). Each sub-region has a unique
topographical feature which forces the model differently
to generate the data over complex meteorological fields.
A number of studies have shown downscaling approach
represents coarse-scale climate at finer resolution based
on elevation and geographic location (Palet al., 2000;
Gaoet al., 2012). However, heterogeneity in the topogra-
phy, canopy cover, land use and coastal influences can
affect the climate simulation at finer scale (regional or
local; Giorgi et al., 2003). The observation temporal inter-
annual variability over northern region (NWI and NCI)
showed that the t2m in the range of 26–32� C which is
well simulated by the Kuo and Grell CPSs during 1986–
2010 (Figure 12a,b). Other CPSs (Emanuel, Tiedtke, and
Mix98) show very high value which is approximately
more than 10� C compared with observation but showing
same SD and CV as IMD (Table 5). It is well known that
the selection of appropriate CPSs for the rising issue
could not rely only on correlation coefficient value; there-
fore, other statistical values such as MB, RMSE, and SD
can help to determine the actual results. Over the north-
ern region, Emanuel and Tiedtke CPSs are showing
greater overestimation in t2m temporal distribution but
same variability pattern as IMD (Figure 12a,b) as com-
pared to the WPI, EPI, and SPI region. On the other
hand, Mix99 CPS is showing the overestimated degree of
variability with highest correlation coefficient during
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F I G U R E 1 2 (a–e) Interannual variability of mean surface air temperature (� C) during JJAS over Indian sub-regions during 1986–2010
[Colour figure can be viewed at wileyonlinelibrary.com]
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