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Highlighting the compound risk 
of COVID‑19 and environmental 
pollutants using geospatial 
technology
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The new COVID‑19 coronavirus disease has emerged as a global threat and not just to human health 
but also the global economy. Due to the pandemic, most countries affected have therefore imposed 
periods of full or partial lockdowns to restrict community transmission. This has had the welcome 
but unexpected side effect that existing levels of atmospheric pollutants, particularly in cities, have 
temporarily declined. As found by several authors, air quality can inherently exacerbate the risks 
linked to respiratory diseases, including COVID‑19. In this study, we explore patterns of air pollution 
for ten of the most affected countries in the world, in the context of the 2020 development of the 
COVID‑19 pandemic. We find that the concentrations of some of the principal atmospheric pollutants 
were temporarily reduced during the extensive lockdowns in the spring. Secondly, we show that the 
seasonality of the atmospheric pollutants is not significantly affected by these temporary changes, 
indicating that observed variations in COVID‑19 conditions are likely to be linked to air quality. On this 
background, we confirm that air pollution may be a good predictor for the local and national severity 
of COVID‑19 infections.

The SARS-CoV-2 coronavirus disease (COVID-19) has emerged as a global pandemic and has so far affected 
more than 220  countries1–12. As of 24 November 2020, this includes more than 59.61 million people worldwide 
with 1.4 million mortalities and 41.24 million recoveries (Source: Johns Hopkins Corona Virus Resource Center, 
https:// coron avirus. jhu. edu/)13. Countries in which COVID-19 has had severe consequences, e.g., in terms of 
the number of infections and mortalities, include USA, India, Brazil, Russia, France, Spain, United Kingdom 
(UK), Argentina, Colombia and  Mexico13. For example, in India, hundreds of people are dying every day due 
to the deadly virus. Further, due to non-pharmaceutical interventions and policies introduced to cope with the 
pandemic situation, global and national economic activities in both developing and developed countries have 
been  influenced14–20.

As the result of lockdowns and disruption of industrial activities, a significant reduction in air pollution 
has occurred worldwide, especially with respect to the atmospheric concentrations of carbon monoxide (CO), 
nitrogen dioxide  (NO2), sulfur dioxide  (SO2), aerosols and ozone  (O3). Clean air is essentially linked to human 
health. Similarly, changes in air quality and/or the natural atmospheric composition due to, e.g., contamination 
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harms a wide range of living biological organisms either directly or  indirectly21–24. With the rapid growth of 
metropolitan areas, particularly in developing countries, considerations of air quality are increasing importance 
and air quality monitoring has become a critical  challenge25,26.

Local climatic and environmental conditions and variations can play an important role in the transmission 
of respiratory diseases, including COVID-19, and exacerbate the risk of morbidity and  mortality26–30. Several 
recent  studies30–40 has reported correlations between air pollutants like  PM10,  PM2.5, CO,  NO2 and  O3 and mortal-
ity rates associated with COVID-19. Taking the example of Northern Italy, which features some of the highest 
levels of air pollution in Europe, this region has been highly affected by COVID-19 with high incidence and 
mortality  rates41. Similarly, several Indian megacities, notably Delhi and Mumbai, which are epicenters of the 
coronavirus disease, count amongst the world’s most polluted  cities40–44. Local observations confirm that risks 
from respiratory diseases tend to worsen in the winter when air pollution peaks. In this regard, air pollution as a 
factor cannot be neglected when considering the transmission and mortality rates related to COVID-19. Hence, 
the availability of detailed, spatial information on air pollutants may be important planning tools for mitigating 
the impact of the COVID-19 pandemic.

Remote sensing techniques are essential tools for mapping air pollutants especially CO,  NO2,  SO2, aerosols 
and  O3. Since these quantities interact dynamically within the atmosphere, wide coverage remote sensing systems 
with frequent revisits play a key role. One such system is the Moderate Resolution Imaging Spectroradiometer 
(MODIS), whose sensors have contributed to a large number of studies on atmospheric  pollutants45. A newer 
source of remotely sensed (satellite-based) information is the Sentinel-5 Precursor (5P), which allows end-users 
to obtain information on trace gases such as methane and carbon monoxide on a daily  basis46–48. As indicated 
above, air pollution is largely sourced from activities associated with urban environments (including industrial 
production) and agriculture where, in particular, the former has been extensively  investigated49,50.

In this paper, we explore the dynamics of different air pollutants and qualitatively highlight potential links 
with COVID-19 pressures during different phases of the pandemic for ten of the most affected countries in 
the world: USA, India, Brazil, Russia, France, Spain, Argentina, UK, Colombia and Mexico. In this respect, we 
essentially extend the study by (Mohammad et al)51, who introduce a similar methodology as means of discuss-
ing whether COVID-19 is a “blessing in disguise” based on (visual) observations of a single pollutant  (NO2) 
with case examples from China, France, Spain, Italy, and USA. Here, we consider five pollutants (CO,  NO2, 
 SO2, aerosols and  O3) instead of one and, as just mentioned, ten countries, including also countries in South 
America, Russia and India. One could easily argue (and rightly so) that more sophisticated methods, machine 
learning, etc. could be used to yield more detailed quantitative results. However, since the intended benefit of 
our study lies in extended coverage, in the following we chose to adopt an illustrative methodology similar to 
that of (Mohammad et al)51.

Geospatial data was extracted from the European Commission’s Copernicus Earth Observation Satellite 
Sentinel-5P. The TROPO spheric Monitoring Instrument (TROPOMI) onboard Sentinel-5P senses air quality 
parameters, i.e., methane, aerosols, carbon monoxide, nitrogen dioxide, and sulphur dioxide in the lowest layer 
of the atmosphere (troposphere). Spatially distributed information for prominent pollutants, including CO, 
 NO2,  SO2, aerosols and  O3, were acquired for three time periods, which conceptually corresponded to different 
seasonal conditions (e.g., winter, summer, autumn), different phases of the COVID-19 pandemic and also to 
different levels of mitigating measures. Phase-1 (initial spread of COVID-19) covered the period from 25 Janu-
ary to 31 January 2020; Phase-2 (first wave, extensive lockdowns were implemented in many countries) to the 
period from 25 May to 31 May 2020); and Phase-3 (second wave of the pandemic, less restrictive interventions) 
to the period from 25 October to 31 October 2020. The observed levels of air pollution are compared with daily 
COVID-19 data collected by the Johns Hopkins Corona Virus Resource Center (https:// coron avirus. jhu. edu/) 
and the Government of India, (www. mygov. in).

Methodology
COVID‑19 data. In general, spatially distributed data on COVID-19 transmission in very high resolution, 
i.e., at sub-national, state, regional or even city scales are not freely available, and so in the following, we consider 
only aggregated information at the national level. We collected information on cumulative and active infections 
and deaths from 22 January 2020 to 10 November 2020, in USA, India, Brazil, Russia, France, Spain, Argentina, 
UK, Colombia and Mexico from the Johns Hopkins Corona Virus Resource Center (https:// coron avirus. jhu. 
edu/) and the Government of India, (www. mygov. in). For the periods 21 May 2020 to 4 June 2020, and 21 Octo-
ber 2020 to 4 November 2020, corresponding to the above-mentioned Phase-2 and Phase-3, we calculated four 
indicators, which represent the local state of the COVID-19 pandemic in the ten different countries (Table 1). 
The length of these periods are slightly longer than the periods used for extracting the remotely sensed data to 
better account for the daily statistical variations in COVID-19 numbers:

• New actives per day: the number of total active COVID-19 cases found for the first and last four days in 
the time window are averaged, then subtracted, and finally the average daily change in the number of active 
cases is calculated.

• Mean no. active cases: the average number of total active COVID-19 cases during the 15 days.
• New deaths per day: the number of total deaths due to COVID-19 cases found for the first and last four 

days in the time window are averaged, then subtracted, and finally the average daily change in the number 
of deaths due to COVID-19 is calculated.

• Death % of no. actives: ‘New deaths per day’ as a fraction of the ‘Mean no. active cases’.

https://coronavirus.jhu.edu/
http://www.mygov.in
https://coronavirus.jhu.edu/
https://coronavirus.jhu.edu/
http://www.mygov.in
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As shown in Table 1 only the USA experienced a significant temporary decline in the COVID-19 transmis-
sion rate during Phase-2 (Northern Hemisphere Spring), a picture which is reversed in Phase-3. In Phase-3 
(Northern Hemisphere Autumn), a significant decline is experienced in India, Brazil, and Argentina, whereas in 
Colombia and Mexico just north of the equator the daily transmission rate is almost unchanged from late May 
to late October (even though the total number of active cases grows by up to a factor of 10).

Sentinel‑5P based datasets. Sentinel-5P based datasets, including the Aerosol Absorbing Index (AAI), 
Carbon Monoxide Column Density, Tropospheric  NO2 Concentration, Ozone Total Atmospheric Column and 
Sulphur Dioxide Column Density, were extracted from (https:// code. earth engine. google. com/) andused for 
monitoring the air quality of the ten countries mentioned above. Sentinel-5P uses the TROPOMI instrument, 
which has a multispectral sensor that records reflectance of wavelengths optimum for measuring the atmos-
pheric concentration of gases at a spatial resolution of 0.01 arc degree. The retrieval of Sentinel-5P data, its 
pre-processing and map generation werecarried out using the Google Earth  Engine52, which is a cloud-based 
platform widely used for processing satellite data.

To illustrate the spatio-temporal variation of different air pollutants, the abovementioned quantities were 
obtained for three different periods as listed above, corresponding to the initial phase of the COVID-19 pan-
demic, the mid-2020 situation (first phase of the disease) and a late-2020 situation (second or in some cases even 
the third phase of the disease):

• Phase-1 (25 January 2020 to 31 January 2020).
• Phase-2 (25 May 2020 to 31 May 2020).
• Phase-3 (25 October 2020 to 31 October 2020).

For comparison, we also extracted comparable data for similar periods in 2019.

Indicators of air pollution. The Aerosol Index Product provided by Sentinel-5P is a qualitative index 
that measures the presence of aerosols with substantial absorption. Mathematically, the aerosol index can be 
expressed by:

where AAI is the aerosol absorbing index;  Rmeas depicts measured reflectance at wavelengths λ1 and λ2;  Rcalc 
describes calculated reflectance from the atmosphere with Rayleigh scattering;  ALER is the Lambert equivalent 
reflectivity, which is the measured reflectance for wavelength λ2.

The Carbon Monoxide Product is used to estimate the total column that needs to be retrieved—not only 
for background CO abundance but also for surface reflection. A physics-based retrieval approach was usedto 
derivethe scattering properties of the observed atmosphere and associated trace  gases53,54.

Nitrogen dioxide  (NO2) and nitrogen oxide (NO) referred together as nitrogen oxides are significant trace 
gases that are the end products of anthropogenic sources as well as natural processes.

Ozone profiles were utilized to monitor the development of stratospheric ozone. Two types of products were 
used; the first covered the entire atmosphere and was derived in the spectral range of 270–320 nm. The second 
one covered the tropospheric profile, spanning the spectral range from 300 to 320 nm.

A Slant Column Density (SCD) is derived using the log ratio of the observed UV–visible spectrum, back-
scattered radiation from the atmosphere and the observed spectrum. The SCD depicts the gas concentration, 

(1)AAI = 100 log10

(

Rmeas(�2)

Rmeas(�1)

)

− 100 log10

(

Rmeas(�2)Rcalc
(

�1,ALER(�1)
)

Rmeas(�1)Rcalc
(

�2,ALER(�2)
)

)

Table 1.  Indicators of the state of the COVID-19 pandemic in ten selected countries in Phase-2 and Phase-3. 
The indicators are based on 15-days of recorded data (number of active infections, the total number of deaths) 
provided by the Johns Hopkins Corona Virus Resource Center (https:// coron avirus. jhu. edu/).

Date 21 May–4 June 2020 (Phase-2) 21 October–4 November 2020 (Phase-3)

Country
New actives per 
day

Mean no. active 
cases

New deaths per 
day

Death % of no. 
actives

New actives per 
day

Mean no. active 
cases

New deaths per 
day

Death % of no. 
actives

USA − 933 1,120,335 724 0.065 38,354 5,137,198 601 0.012

India 2189 87,248 145 0.166 − 9918 611,118 387 0.063

Brazil 7535 234,560 701 0.299 − 20,217 487,911 288 0.059

Russia 512 227,337 120 0.053 3792 358,719 217 0.061

Colombia 390 17,636 22 0.127 421 71,706 135 0.189

Spain 327 59,780 33 0.055 13,966 948,960 139 0.015

Argentina 348 9737 25 0.256 − 1147 164,598 248 0.151

France 79 90,111 44 0.049 30,680 1,129,328 230 0.020

Mexico 237 14,615 262 1.790 360 151,961 297 0.196

UK 923 215,157 159 0.074 16,102 897,270 179 0.020

https://code.earthengine.google.com/
https://coronavirus.jhu.edu/
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which is bias-corrected and converted into vertical columns through air mass factors. The vertical columns are 
evaluated mathematically by

where  Nv and  Ns respectively represent the vertical and slant column density;  Ns
back depicts values for background 

correction, and M is the air mass factor.

Results and discussion
COVID‑19 pressures. As shown in Table 1, in all of the ten countries the number of active COVID-19 
cases increased from late May to late October, ranging from a 50% increase in Russia to a multiplier of 16–17 
times in the case of Spain and Argentina. Except for USA and Brazil, the average daily number of deaths due 
to COVID-19 also increased, indicating a steeper trajectory, although in relative terms the mortality rate of the 
disease, measured as the number of daily deaths divided by the total number of active infections, in most cases 
decreased. All of these numbers of course mask out very large (spatial) variations. Hence, transmission rates of 
COVID-19 and thereby total numbers of infections are high in densely populated urban areas, where also air 
pollution is generally a major challenge. Five of the ten countries depicted here, which currently ranks amongst 
those countries in the world most affected by COVID-19: USA, India, Russia, Brazil and UK are also amongst 
those with the worst quality of air (see below). On this background, it is reasonable to hypothesize that the 
previously documented  relationship31–40 between (poor) air quality and the severity of respiratory diseases also 
affect the risk of morbidities and mortalities related to COVID-19. A formal attribution of this effect is however 
beyond the scope of the current study.

Spatiotemporal distribution of air pollutants. Time-series data of AAI, CO,  O3,  SO2 and  NO2 were 
extracted for the three phases, corresponding to the last week of January (outbreak of COVID-19), May (main 
lockdown period), and October (normalized situation or partial lockdown). In general, the geographical reparti-
tion of CO,  O3,  SO2 and  NO2 values delineate a set of characteristic pollution patterns for the USA, European and 
Asian countries, which changed between phases.

AAI is a qualitative index indicating the presence of elevated layers of aerosols. Figure 1 indicates significant 
absorption for all of the countries in this study: USA, India, Brazil, Russia, France, Spain, Argentina, UK, Colom-
bia, and Mexico. Desert dust, biomass burning and volcanic ash plumes are likely to be the main contributors 
to the AAI and can be derived over clear as well as (partly) cloudy pixels. In Fig. 1, large AAI is generally found 
for the northern parts and west of the central part of Russia, USA, India, UK, Colombia, Mexico and Spain due 
to desert dust and anthropogenic pollution. The AAI over the western and eastern coasts of the USA can also 
be attributed to anthropogenic sources, as those regions are the main industrialized areas in the country. States 
in the USA dominated by agricultural sectors like the Midwest are generally dominated by lower values of the 
AAI. Industrial emissions in South America are also assumed to be important contributors to the global aerosol 
production. Overall, the spatial patterns appear to be similar for all retrievals; while small differences in the 
retrievals (e.g. varying pixel intensities) may be due to seasonal variations, they could also be explained by other 
factors including aerosol model assumptions, sensor calibration and cloud screening. Inter-annual variability 
of smoke intensities in the south of the USA and Brazil regions are closely tied to the drought cycle. Meanwhile, 
aerosol amounts over India, Brazil, Russia, France, Spain, Argentina, UK, Colombia and Mexico sites are mostly 
dominated by the smoke generated from fires associated with savanna and forest clearing practices.

Comparing the spatial distribution of the AAI across all three phases (Phase-1 to Phase-3), unchanged (or 
slightly intensified) patterns were principally found for Mexico and Colombia. This suggests that there has been 
no significant change in the environmental air quality amid the restrictions installed by the Colombian and 
Mexican Governments since March 2020. Conversely, in other countries, the imposed restrictions caused by 
lockdowns (Phase-2) appear to have had a positive impact with respect to aerosols, which would be a favorable 
condition for COVID-19 mitigation.

Analogous trends are depicted in Figs. 2 and 3 (S1, S2 in the Supplementary Material), indicating improve-
ments in air quality with respect to several of the indicated trace elements, i.e., as a side effect of measures 
introduced to mitigate the spread of COVID-19 from March to June 2020. For all countries, the level of CO 
generally decreased though with significant spatial variation (Figure S1).  NO2 levels also decreased generally in 
some countries during Phase-2 (Fig. 2). Conversely, e.g., in India, USA and Russia, regional concentrations of 
 NO2 and  O3 (Figure S2) increased significantly, in some case by more than 50% during the “lockdown” Phase-2 
as compared to Phase-1.

In terms of nitrogen and sulphur dioxide pollutants (Fig. 3), very significant improvements in air quality are 
seen in Mexico. At the time of the first reported COVID-19 cases in Mexico (Phase-1), levels of atmospheric 
nitrogen and sulphur dioxide pollutants were extremely high, especially in the regions of Baja California in the 
West and the North and Eastern regions, including Coahuila, Nuevo Leon and Tamaulipas. Shortly after the 
restriction was imposed,  NO2 and  SO2 amounts declined, suggesting that recorded morbidities and mortalities 
due to COVID-19 in Mexico would be less affected by these aspects of air quality.

Comparing the results found for Phase-2 and Phase-3 (Figs. 1, 2, 3, S1, S2), it is evident that the observed 
reductions in air pollution levels resulting from the (partial) lockdowns were only temporary. Not accounting 
for seasonal variations, as global and national economic activities resumed, levels of air pollution started to rise 
again from May to October (e.g., Phase-3).

(2)Nv =

Ns − N
back
s

M
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Temporal dynamics of CO,  O3,  SO2 and  NO2 between 2019 and 2020. Figures 4, 5, 6 (and S3, S4 in 
the Supplementary Material) illustrate the temporal (daily) dynamics and seasonal variability of the same set of 

Figure 1.  Aerosol absorbing index of the top ten most affected  countries32.
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pollutants (aerosols, CO,  O3,  SO2 and  NO2) as depicted on Figs. 1, 2, 3. The blue curves correspond to data from 
2019 whereas the red curves indicate data for 2020. The mid-points of the three phases studied above correspond 

Figure 2.  Tropospheric nitrogen dioxide concentration of top ten most affected  countries36.



7

Vol.:(0123456789)

Scientific Reports |         (2021) 11:8363  | https://doi.org/10.1038/s41598-021-87877-6

www.nature.com/scientificreports/

Figure 3.  The sulphur dioxide column density of the top ten most affected  countries36.
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to the following days-of-year (DOY): 28 (28 January 2020), 149 (28 May 2020) and 302 (28 October 2020). Both 
of the time series (2019, 2020) are truncated after Phase 3 (Figs. 4, 5, 6, S3 and S4).

Assuming 2019 to be a “normal year”, we generally find that the seasonal variations in 2020 are preserved 
for all variables despite the modifications brought about by the implementation of COVID-19 policies, includ-
ing lockdowns. For the developing countries Mexico and Colombia, a highly fluctuating AAI is observed both 
in 2019 and in 2020 (Fig. 4), which is probably not related to COVID-19 but due to some other cause like the 
frequent biomass burning for energy purposes in the countryside.

As already mentioned, net reductions in CO,  O3,  NO2 and  SO2 were observed for many countries in 2020—
particularly when going towards May 2020. These reduction scans are attributed to the complete or partial 
lockdown of industrial activities and vehicle traffic across the American, Asian and European continents. To 
exemplify, by population, Europe ranks third among regions of the world with 9.8% of the total population in 
the world living in Europe (Worldometer’s 2020 statistics). Over 70% of the European population, however, 
lives in urban areas, explaining the generally high levels of CO,  O3,  SO2 and  NO2 pollution. By the end of May 
2020, multiple European cities that previously featured high levels of air pollution (CO,  O3,  NO2 and  SO2) now 
reported very low pollution levels, indicating improvements in air quality. Comparing 2019 and 2020 (Fig. 5), 
the tropospheric  NO2 column number density maintained high values of about 0.0001 mol/m2 for the USA, 
France and UK. In countries like Argentina, Brazil, Colombia, Russia, and Spain the equivalent numbers were 
found to be lower (closer to below 0.0001 mol/m2 in 2019) and improving during the principal 2020 lockdown.

For several major cities in France, Spain, UK, USA and Russia,  O3 concentrations increased in 2019 compared 
to previous years (Figure S4). They slightly decreased in 2020 especially during the lockdown (e.g., Phase-2) 
(0.16 mol/m2) (Figure S4). In the Latin American countries, represented by Columbia, Brazil, Argentina and 
Mexico,  O3 concentrations were comparably found to be lower (0.12 and 0.14 mol/m2 respectively) than the 
just mentioned countries. This is in line with the fact that many lower-income countries emit significantly lower 
levels of atmospheric pollutants. Finally, for  SO2 France and the USA recorded a high level of concentration 
(~ 0.002 mol/m2) (Fig. 6), although we also note that the spatial distribution of  SO2 pollutants is influenced by 
local factors in almost all cases.

Several authors have already demonstrated a correlation between air pollution and morbidity and mortality 
linked to respiratory diseases and in particular to COVID-19. Given the different scope and (coarse) resolution 
of the COVID-19 data used, it was however not possible to carry out a similar attribution within this study. In a 
qualitative sense, it is evident though that the relatively moderate health and multi-sectorial impacts suffered in 
the Spring of 2020 (compared to the present situation worldwide) may have taken advantage of the significantly 
lower levels of select air pollutants that was a welcome but unexpected side effect of the lockdowns introduced 

Figure 4.  Aerosol absorbing index (AAI) of the countries for the years 2019 and 2020. DOY day of the year.
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in many countries. For example, this could prospectively help to explain the positive situation in the USA in late 
May 2020, which only a few months later was turned upside down. Conversely, our results also seem to indicate 
that seasonal variations alone are insufficient as a means of explaining the potential variation in the risk of, 
e.g., mortalities due to COVID-19. That said, as already suggested by our analysis, air pollution—especially in 
cities—tend to reach a high point in the winter season. When combined with the current (and very alarming) 
growth in the incidence rates of COVID-19 all over the world, this could exacerbate the already very critical 
situation in many countries, where COVID-19 threatens the capacity of national and local health systems. This 
could for example be true in developing countries like India, where 21 out of 30 major cities are listed among 
the most polluted cities in the world.

Conclusion
In this study, we explore the utility of remotely sensed data as a means of qualitatively explaining the observed 
developments of the COVID-19 pandemic, and in particular, the varying risk of a deadly outcome. On this 
background, data from Sentinel-5P was retrieved for 2019 and 2020. For 2020, three conceptual phases of the 
diseases were investigated: an early stage at the end of January (Phase-1), a stage a least partly overlapping the 
extensive lockdown, which was demanded in many countries, starting from around March (Phase-2); and finally, 
a stage in late October, where lockdowns had been relaxed, leading to resumed local and global economic activi-
ties (Phase-3).

Using data extracted from the Johns Hopkins Corona Virus Resource Center, we illustrate the temporal 
development of the novel coronavirus in ten of the most severely affected countries in the world. From Phase-2 to 
Phase-3, the globally accumulated numbers of COVID-19 infections have increased dramatically with the USA in 
the less fortunate role of being first on the list. For India, Brazil and Argentina, a decline in the number in active 
infections is observed, for Columbia and Mexico the numbers are largely unchanged, whereas for the remaining 
countries (USA, Russia, France, Spain and the UK) the development follows the increasing global trend.

Comparing different indicators of air pollution for 2019 and 2020, despite the anomalous modifications 
introduced by the lockdowns, seasonal variations were generally found to be unchanged, and indicating that 
observed variations in COVID-19 conditions are likely to be linked to air quality. Further, the level of most 
pollutants temporarily declined in Phase-2. On this background, our study confirms that air pollution may be a 
good predictor for the local and national severity of COVID-19 infections.

Figure 5.  Nitrogen dioxide of the countries for the years 2019 and 2020.
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Data availability
Data on COVID-19 was acquired from the repositories of the Johns Hopkins Corona Virus Resource Center, 
the Worldometer and the Ministry of Health and Family Welfare, Government of India. These data sources are 
freely accessible through web-based archives.
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