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Abstract
Inevitable issues concerning the sustainability of groundwater resources are crucial under 
the present climatic situation. Therefore, the prevision of groundwater environments 
may able to reinforce the management system. In this respect present study considered a 
new method to predict long-term groundwater level framework as an alternative option 
of expensive physical models. The proposed Bidirectional Long Short-Term Memory 
(BLSTM) model can efficiently capture Spatio-temporal features from historical data. A 
highway LSTM network is also introduced within the architecture of the model to optimize 
the analysis. The relative performance of the proposed BLSTM with the highway LSTM 
(BHLSTM) network compared with simple BLSTM. Stack size increment of the BHLSTM 
and BLSTM layers can enhance the learning ability and improve by incorporating straight 
LSTM at the top of the architecture. The proposed model was applied to predict the 
groundwater level exemplary of the Varuna River basin for twenty years. The model incor-
porates the historical annual average of total precipitation, temperature, relative humidity, 
actual evapotranspiration, and groundwater level data to develop and validate the models. 
The result shows that the signals are captured reasonably well by a stack of four BHLSTM 
and straight LSTM models in forecasting groundwater levels. The predicted water level 
range (0—20 mbgl) has four categories low, medium, high, and very high which eventu-
ally, illustrates the water-threatened situation in upcoming years in the study area. It is also 
recommended to exploring this proposed method for further improvements and extensions 
towards interpreting spatial features.
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1 Introduction

Artificial intelligence and machine learning modeling have shown efficiency in most predic-
tive analyses. The present study focuses on predicting groundwater levels based on certain  
factors observed around a particular river basin over a certain period. Groundwater level 
change is an important aspect that can be affected due to climate variation and human 
activities. Predictive analysis of world climate variation suggests plunges in mean precipi-
tation and upsurges in temperature and solar radiation which escalates potential severity 
and frequency of drought events or scarcity of water resources (IPCC 2014). Hence the 
deficiency or water scarcity condition will initiate surface water resources meagerness, 
extra burden on groundwater resources to fulfill the societal needs. Therefore, groundwater 
storage is perceived as a dependent feature of climate variability and reflects groundwater 
level variation. However, long-term groundwater level premonition is an essential critical 
task; it is necessary as climate change leads to appalling significances for agriculture and 
environment sustainability, including food and water scarcity (Mall et al. 2006).

Over the past few decades, artificial intelligence models have gained considerable atten-
tion due to their advantages over numerical models and have been proved efficient in pre-
dicting complex hydrologic systems (Banerjee et  al. 2009; Adamowski and Chan 2011;  
Garg 2014; Mirzavand et al. 2015; Gong et al. 2016; Alizamir et al. 2018; Afzaal et al. 2020; Bai 
et al. 2021; Feng et al. 2008). Coulibaly et al. (2001) and Style (2009) reviewed a comprehensive  
study on the application of artificial neural networks (ANN) in the prediction of ground-
water fluctuation. Lallahem et  al. (2005), for the first time, used ANN in a Multilayer Per-
ceptron (MLP) to evaluate the dynamic water level in a karstic aquifer. They confirmed the  
ability of ANN in simulating groundwater level fluctuations of karstic aquifer compared to 
numerical models using the climate parameters. Several researchers have investigated the  
merit of the Spatio-temporal ANN model through distinct approaches such as the Fuzzy  
Inference System (FIS) (Zhu and Zhou 2009), Adaptive Neuro-Fuzzy Inference System 
(ANFIS) (Djurovic et  al. 2015), Support Vector Regression (SVR) (Suryanarayana et  al. 
2014), Nonlinear Autoregressive Networks with Exogenous Input (NARX) (Guzman et  al. 
2017). A long-term groundwater level prediction had carried out using the WNN model  
that is trained by a novel improved algorithm to forecast one-year groundwater level conditions  
by Rakhshandehroo et al. (2017). The study lacks the Spatio-temporal variation and consid-
ers one deep and shallow well data. Coulibaly et al. (2001), first attempted the RNN model  
to predict groundwater level in a Spatio-temporal setup. The Recurrent Neural Network 
(RNN) is the most appropriate model for model-dependent data. However, direct RNN has 
drawbacks of vanishing gradient and exploding gradient problems, discouraging practition-
ers from using this model. Moreover, their approach raises questions regarding the spatial  
contributions within the network.

The Long Short-Term Memory (LSTM) networks successfully overcome such a prob-
lem. These models are capable of learning long-term dependencies of sequence data 
(Hochreiter et  al. 1997). Recently some attempts are made to use long-short term mem-
ory (LSTM) based on recurrent neural networks (Zhang et al. 2018; Jeong and Park 2019; 
Wunsch et al. 2020) to predict groundwater level. Modeling a multidimensional sequence 
in Spatio-temporal data is attempted by Cui et al. 2018. They propose to use output dimen-
sions as the spatial dimension for one particular variable and the time series model set up 
to predict the variables at all locations together. All the work mentioned related to LSTM 
considered a sufficient number of temporal data. Therefore, using straight LSTM was 
not a problem. However, the present dataset is slightly different. It does not have enough 
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temporal data sets, but it has a spatial structure, which demands a different approach to 
predict groundwater levels with minimum parameterization. Simultaneously, such a model 
should be able to handle expected climate variability. Considering all these factors, a more 
advanced, simple, robust, and efficient BLSTM model used to overcome the hitches. This 
study designs and evaluates an innovative methodology based on BLSTM to capture the 
Spatio-temporal behavior of an aquifer system or dynamic nature of groundwater with a 
limited data source. The Varuna river basin in Uttar Pradesh, India, was chosen as the study 
area. The area is situated in the central part of the Ganga river basin and is a highly agricul-
turally productive region. As a result, 23% and 31% of the area includes over-exploited and 
semi-critical groundwater resources (CGWB  2019), and the groundwater level has been 
declining steadily. This new approach can provide new insights for socially relevant predic-
tions, attributions, and optimizations on a long-term basis, primarily to manage groundwa-
ter infrastructure.

2  Materials and Methods

2.1  Study Area

Varuna river basin is located in the central Ganga alluvial plain between  25o39o28.71 N  
to  25o19o44.61  N latitude and  81o45o57.46 E  to  82o03o06.59 E longitude and covers an 
area of 3675  km2. The basin encompasses fluvial sediments of Pleistocene to Recent, which  
forms a multi-layered aquifer system. The shallower aquifer has silt, clay, and silty clay 
horizon mainly forms the unconfined aquifer. The deeper aquifers are confined to semicon-
fined in nature and primarily made up of sand (Dey et al. 2021). The Varuna river basin 
(Fig.  1) experiences semiarid to sub-humid tropical climate and receives annual rainfall 
between 572 and 897 mm.

Fig. 1  Location map of Varuna river basin, Uttar Pradesh, India and variation of climatic parameters (Rain-
fall, Temperature mean (Tmean), Actual Evapotranspiration (AET), Relative Humidity (Rh)) and ground-
water levels over the Varuna river basin
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However, for the last two decades, the precipitation at the Varuna river basin (Avg. value  
of 31 locations) shows a slightly decreasing trend mainly since the last  five years. As  
a result, the area receives a sharp diminution in amount (Fig.  1). Subsequently, the mean  
temperature and evapotranspiration show an increasing trend over the years, reflecting rela-
tive humidity (Fig. 1). Though a high level of relative humidity supports a hike in precipita-
tion, an increase in temperature may hinder the tendency. Thus, particular circumstances cre-
ate a low recharge condition for both the water resources. On the other hand, aquifers of this 
region manifest by decreasing temporal groundwater level trends over the years (Fig. 1) due to 
the rapid growth of human populations and expansion of agricultural, energy, and industrial 
sectors.

2.2  Dataset Description

The present dataset includes the time series data from 1996 to 2015. In addition, groundwater 
level data of bore wells of the Varuna River basin collected from India- WRIS (Water Resource 
Information System) web-portal (https:// india wris. gov. in/ wris/#/ groun dWater). Furthermore, 
the Precipitation data and temperature data were collected from the India Meteorological 
Department in the same period, and relative humidity of the data obtained from the NASA 
POWER Data AccessViewer website (https:// power. larc. nasa. gov/ data- access- viewer/).

2.2.1  Evaluation of Potential Evapotranspiration (PET) uses the Hargreaves equation 
(NR under FAO 1998)

where PET = Potential Evapotranspiration, Tmax = Mean maximum tempera-
ture, Tmin = Mean minimum temperature, Tmean = Mean temperature calculated as 
(Tmax + Tmin)/2, Ra = Extra-terrestrial Radiation (mm/day) are obtained from standard 
graphs given in FAO (NR 1998). PET was further multiplied by 0.8 to get actual evapo-
transpiration (AET) (Kumar et al. 2011).

All models primarily depend on selecting significant input variables (Lallahem et  al. 
2005; Chitsazan et al. 2015; Djurovic et al. 2015). Precipitation is considered an essential  
recharging parameter to control the groundwater level. Evapotranspiration, relative  
humidity, and temperature are responsible for the discharge of groundwater. However, to 
make the selection design more concrete, it is necessary to ensure the dependency level, 
which is highly complex and explicitly not defined (Djurovic et al. 2015). Autocorrelations 
are a few frequently used methods (Coulibaly et al. 2000; Sudheer et al. 2002; Djurovic 
et  al. 2015) to determine the dependency of parameters over the different time horizon. 
The correlation matrix in the present dataset shows that rainfall had a negative relationship 
with almost all the parameters, whereas other parameters had a strong positive relationship 
(Table 1). In an autocorrelation analysis, data related to rainfall clearly showed the serial 
dependence (Fig. 2). It is also very much possible that variance is time-varying. However, 
the presence of even one-time dependent variables put the whole multidimensional setup 
into a dependent structure.

(1)PET = 0.0023 × (Tmean + 17.8) × (Tmax − Tmin)0.5 ∗ Ra

https://indiawris.gov.in/wris/#/groundWater
https://power.larc.nasa.gov/data-access-viewer/
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2.3  Methodology

Learning complex Spatio-temporal features of a large-scale aquifer network may be 
explored through applying dynamic and nondynamic predictions in an experimental model. 
The prediction pattern in the LSTM model depends on the construction of overlapping sets 
of observations. Suppose a sliding window of datasets passed through LSTM cells; it will 
gain an ability to predict only the next time step or filter observations of a particular vari-
able in multidimensional set up at the end of the time steps. Nondynamic predictions gen-
erally filter some variable or predict the following time step observations based on some 
known input parameters. However, Observations at each time step may not always be avail-
able for the long- term in such prediction. Therefore, the dynamic prediction comes into 
the picture. Dynamic prediction sequentially uses the predicted groundwater level/other 
parameters as input parameters to predict groundwater level/other parameters next time. 
In this paper, the primary objective is to capture the Spatio-temporal behavior when only 
20 years (annual) data point is available. BLSTM and its variations are proposed by taking 
the output dimension as a parameter dimension and sliding the widow of observations over 
different spaces. Usually, LSTM structures work based on forwarding dependences (Lipton 
et  al. 2015). The chronologically arranged dataset used in the LSTM model passed the 
information from (t—1) time step to t time step in a positive direction only. But it is inca-
pable of capturing the system’s randomness or periodicity, which may solve by considering 
the backward dependencies. BLSTM is capable of dealing with both forward and backward 

Table 1  Correlation Matrix of different Climate Variables at a given time

Rainfall Tmin Tmax Tmean AET Relative 
Humid-
ity

Rainfall 1
Tmin -0.227 1
Tmax -0.401 0.688 1
Tmean -0.374 0.839 0.972 1
AET -0.438 0.501 0.966 0.886 1
Relative Humidity -0.332 0.574 0.748 0.747 0.698 1

Fig. 2  Autocorrelation of the input parameters
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dependencies and extracting concepts of multiple meanings. Therefore, BLSTM models 
learn both the spatial and temporal picture of datasets comprehensively. Also, BLSTM 
models combined with a straight LSTM network and highway network utilize Spatio-tem-
poral information from the input data and achieve optimal performance.

2.3.1  Bidirectional Long Short‑Term Memory (BLSTM)

BLSTM is a fabricated form of LSTM, a particular type of RNN. It converts the independ-
ent activations into dependent activations by assigning the same weight and biases to all 
the layers and memorizing each previous output to provide the next hidden layer as input. 
In simple RNN model (Fig. 3a), at each time iteration, t, the hidden layer continues a hid-
den state, ℎt, and updates and accelerated it based on the layer input, xt, and previous hid-
den state, ℎt−1, using the following equation:

W is the weight matrix from the input layer to the hidden layer, V is the weight matrix 
between two consecutive hidden states (ℎt−1 and ℎt), bℎ is the bias vector of the hidden 
layer, and σℎ is the activation function to generate the hidden state. The network output can 
characterize as

U is the weight matrix from the hidden layer to the output layer, by is the bias vector 
of the output layer, and σy is the activation function of the output layer. Finally, the hid-
den layer generates the output  yt. The model’s efficiency is reduced by its vanishing gradi-
ent problem during the propagation and is incapable of learning from long-term time lags 
(Gers et al. 2000). However, the advanced architecture of the LSTM efficiently controls the 
problem mentioned above. The motivation for the introduction of the LSTM cell is through 
input weight conflict and output weight conflict.

(2)ht = �h

(
Wxt + Vht − 1 + bh

)

(3)yt = �y

(
Uht + by

)

Fig. 3  Figure shows (a) standard RNN follows only forward dependencies and (b) BLSTM includes both 
forward and backward dependencies in which LSTM cell comprises of memory blocks represented within 
red rectangle region. (c)The LSTM layer is incorporated with the Highway network to form the BHLSTM 
layer
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The LSTM architecture consists of current input xt, the previous output  ht −1, and the 
last state cell  ct −1. Inside the cell, there are three gates, forget gate (f), input gate (i), and 
output gate (o). These multiplicative gates in LSTM memory cells store and access infor-
mation over a long period thereby avoids the vanishing gradient problem. The following 
equations govern the calculation of the gate vectors

The new values of cell state  ct and output  ht (along with an intermediary variable c̃t) are 
calculated by the following equations

Here, ʘ denotes Hadamard product.  Wf,  Wi,  Wo,  Wc are the weights corresponding to 
input, and  Ui,  Uf,  Uo,  Uc are the weights corresponding to hidden units at previous time 
steps.bf,  bi,  bo, and  bc denote different biases. σ is the activation function, usually the  
sigmoid function of the output layer, and the tanh is the hyperbolic tangent function. The 
final output of the LSTM layer takes the notation as  YT = [ℎt, …, ℎt−1], which should be a 
vector of all the results.

Usually, the LSTM layers process sequence data uni-directionally and restrict it to cap-
ture the system’s randomness or periodicity. However, introducing a backward LSTM layer 
into the network may fetch the problem, make the network bidirectional. Thus, the struc-
ture of an unfolded BLSTM layer containing a forward LSTM layer and a backward LSTM 
layer, which processes sequence data with two separate hidden layers and connects them to 
the same output layer (Fig. 3b). The inputs in a positive direction from the time frame t-n 
to t + n iteratively produce the forward layer output sequence. In contrast, the reverse data 
in the same period calculate the backward layer sequence. The layer outputs are computed 
using the standard LSTM Eqs. (3–4) and generate the final output  yt, derived from the fol-
lowing equation.

Where σ is the activation function to combine the two output sequences.

2.3.2  Highway LSTM

Highway networks was introduced to make the training of strong neural networks easy. The 
highway networks strengthen the LSTM layer to handle long-range dependencies. It increases  
the depth of the time to remember. The network consists of two gates, the Carry gate ( gC ) 

(4)ft = �
(
Wfxt + Ufht − 1 + bf

)

(5)it = �
(
Wixt + Uiht − 1 + bi

)

(6)ot = �
(
Woxt + Uoht − 1 + bo

)

(7)c ∼t = tanh
(
Wcxt + Ucht − 1 + bc

)

(8)ct = it ⊙ c ∼t + ft ⊙ ct − 1

(9)ht = ot ⊙ tanh
(
ct
)

(10)yt = 𝜎

(
��⃗ht, h

�

t

)
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and the Transformation gate ( gT ) (Fig. 3c). The transformation of input x to output y using 
highway network is given by.

where  WC and  WT are the weight matrices for the Carry gate ( gC ) and Transformation gate 
( gT );  bC and  bT are the biases for the Carry gate and Transformation gate; W and b are the 
weight and bias in the model. Thus, the highway network can incorporate with the LSTM 
cell in two ways, one at the update of cell state  ct and the other at the update of the hidden 
unit  ht (Fig. 3c).

2.3.3  Stacked bidirectional LSTM with Highway LSTM network

A BLSTM architecture stacked with several hidden layers has enhanced the efficiency to 
predict more accurately than one layer (LeCun et al. 2015). When a Spatio-temporal data-
set is fed to the BLSTM or BHLSTM, the spatial and temporal correlation of the input 
parameters in different locations can apprehend by the feature learning processes. The 
architecture includes several layers of BLSTM or BHLSTM and an LSTM layer at the top 
(Fig. 4). The bottommost layer of BLSTM or BHLSTM learns the valuable information 
from the Spatio-temporal dataset and passes into the next upper layer. Finally, the LSTM 
layer employed at the top for capturing the forward dependencies helps to improve the 
model performance in many cases.

2.4  Prediction performance index

We execute the goodness of fit based on RMSE values and C- index values. The compari-
son between different architectures can also evaluate by calculating the absolute RMSE and 
C-index. Lower RMSE indicates a better model, whereas a larger C-index represents better 
models or better fit to the data. In general, RMSE defined as,

where,  Oi = observed value for  ith data,  Pi = predicted value for  ith data, and n = number of 
observations.

The concordance statistics, or the C-index (CI), measures the probability of concord-
ance between the predicted and the observed values.

with the indicator function  1a <b = 1 if a < b, and 0 if not; |ε | denotes the number of edges 
in the order graph. f(xi) is the predicted value for subject i by model f. Perfect prediction 
accuracy is indicated by CI = 1, and CI = 0.5 is as good as a random predictor.

(11)gC = � (Wcx + bC)

(12)gT = � (WTx + bT )

(13)y = x⊙ C + tanh(Wx + b)⊙ T

(14)RMSE =

�∑n

i=0

�
Oi − Pi

�2

n

(15)C(D, 𝜀, f ) =
1

|𝜀|
∑

𝜀ij
1f (xi)<f (xj)
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2.5  Data Processing

The whole data sets are divided into two parts: training (75% data of time series dataset) 
and the other for testing (25% data of time series dataset) the trained models. Detrend-
ing, normalization, and outlier exclusion were carried out to improve the training efficiency 
and estimation accuracy. Feature scaling is performed in training machine learning models. 
The usual method for doing this is to normalize the entire data, feature-wise, to convert it 
to values between 0 and 1. Normalization of the data in this paper has made using the fol-
lowing relation of min–max scaling.

Since the study deals with a constant lookback while training the model (say, BLSTM), 
it makes sense to normalize the data in each lookback length window. Hence, each train-
ing sequence normalized between 0 to 1, and the prediction from the model is later de-
normalized. Thus, window feature scaling enhances training speed and enables the model 
to capture relative variance in the data in a small neighborhood.

(16)norm =
X − Xmin

Xmax − Xmin

Fig. 4  Overview of the proposed model involves (a) single BLSTM and a straight LSTM, (b) stack of four 
BLSTM layers and a straight LSTM, (c) single BHLSTM and a straight LSTM, (d) stack of four a straight 
LSTM and (e) stack of five BHLSTM
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2.6  Parameter Tuning

The input, output, and hidden cell dimensions were set as seven units. The training set with 
batch size 1. The total number of input variables was equal to 465, three-fourths of the 
dataset’s overall quantity. The test set size is 155. We use the sliding window method with 
a window size of 20, which is also the lookback number or number of time steps taken dur-
ing BLSTM training and testing for the data. The dropout value is 0.5 at every LSTM step.

2.7  Interpolation Method

The best-performed architecture was applied to predict the annual groundwater levels of 
31 stations of the Varuna river basin. Then Inverse distance weighting (IDW) interpolation 
using ArcGIS 10.5 platform methods was used to estimate the overall groundwater level 
distribution. The computation of IDW uses a function of the distance between observed 
stations and the stations used for making a prediction (Gunnink and Burrough 1996). Thus, 
this interpolation may preserve some local variation of groundwater level.

3  Results and Discussion

3.1  Performance of Model Based On the Present Dataset: Observations 
and Inference

The analysis showed that the output groundwater level series largely depends on input cli-
matic factors. Notably, the accuracy and trend of prediction are high with known climatic 
factors in dynamic and nondynamic setups. However, the dynamic prediction does not 
work well in the test set due to some overfitting problems. Hence the study chooses to use 
dropout as regularization, which prevents overfitting of the model. The parameter dropout 
is the fraction of the total units that will be randomly selected and turned off. The use of 
dropout enhanced the performance and provided a better graph approximating the test sig-
nal. For this experiment, the dropout is 0.5 at every LSTM step. However, the appropriate 
choice of dropout percentage at every level of the model demands more research. Adam 
optimizer had chosen during training. The training had done on 20 epochs. In highway 
LSTM, we consider the activation function as a rule. The loss function, in this case, is set 
as RMSE. In general, getting a performance with high accuracy is very difficult in the case 
of dynamic prediction. The paper carries information regarding tuning the parameters to 
get the best possible performance in dynamic prediction.

BLSTM has a riveting ability to learn spatial features inherently by the weights in LSTM 
layers at the training process, irrespective of the input data’s spatial structure and spatial 
order. Therefore, the model performance is not affected by the magnitude of the spatial 
dimension of input data (Cui et al. 2018). Various datasets are apprehended between two 
locations by the LSTM weight matrices, storing established spatial correlation. Each of the 
sites under consideration took only 20-time steps in this study. Therefore, the analysis takes 
a lookback number value 20 to manage time and space-related features simultaneously.
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The proposed model designs some architectures combining a single or several ascend-
ing (four stacks) BLSTM layers with a straight LSTM, BHLSTM layers with a straight 
LSTM, and a stack of five BHLSTM layers without a straight LSTM (Fig. 4). Computers 
with model: Intel(R) Core (TM) i5-6200U CPU 2.30 GHz. We use Python 3.5.2 to code all 
architectures.

The performances of the five architectures compared to choose the best architecture, to 
be used further for future forecasting. Table 2 illustrates the results of performance indices 
(RMSE and C-index) for both train and test scores. In terms of the influence of the stack 
size of the neural network, models achieved their best performance with five layers in non-
dynamic prediction. RMSE and C- index improved as the number of layers increased from 
one to four, but minimum RMSE and maximum CI available in a stack of five BHLSTM 
only. Whereas in dynamic prediction, a stack of four layers outperformed the others 
(Table 2). The study indicates that one-layer BLSTM may be good enough for capturing 
features, but it is not satisfactory to predict the results. The nondynamic prediction is pretty 
good with stack size increment. Still, it restricts up to use for the historical period only 
because it is incapable of predicting the climate input parameters for long-term prediction 
and eventually getting the groundwater level’s future output. In contrast, the dynamic fore-
cast can predict input climate parameters and simultaneously output the groundwater level 
for an extended period. Hence, stack size increments of BHLSTM layers and a straight 
LSTM in dynamic prediction may improve the model performances more efficiently.

Proposed architectures adapted during training and testing of the data set, illustrated as 
exemplary of the Kashi subregion, which is analogous for each location considered in this 
study. The present study involved dynamic prediction with the best architecture (stack of 
four BHLSTM layers with a straight LSTM) for future forecasting. The proposed tuning is 
capable of capturing the groundwater level reasonably well. Results showed that original 
data and trained data almost overlapped with each other (Fig. 5). In fact, during testing, the 
ups and downs of the signal are well captured towards the last five years (Fig. 5). Hence, 
the proposed approach can deal with spatially distributed groundwater levels and works 
pretty well over a long period. In all cases, the prediction can capture the trend reflecting 
the mean of the time series at every time instance; surprisingly, variability has improved 
over time. Therefore, the proposed method is helpful in long-term future prediction. One of 
the drawbacks of such an estimate is measuring the confidence interval of the projection. 
Separate research needs to evaluate this issue in a Spatio-temporal setup and will address 
the same in an independent research article.

3.2  Case study: Water level long‑ term Prediction

The proposed model is applied to predict and visualize 20 years of groundwater circum-
stance over the Varuna river basin. The suggested network can predict the annual ground-
water levels of 31 locations randomly selected over the study area. The anticipated results 
then interpolated spatially using ArcGIS 10.5 to represent the decadal changes over the 
basin. Spatial interpolation is carried for four decades, respectively, from 1996 – 2005, 
2006 – 2015, 2016 – 2026, and 2027 – 2035 (Fig. 6). The entire range is categorized into 
four classes low (0 – 5 mbgl), medium (6 – 10 mbgl), high (11 – 15 mbgl), and very high 
(16 – 20 mbgl).
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The analysis result of the predicted values showed decreased amplitude and, eventu-
ally, a water-scarce scenario in the future. In the earlier two decades up to 2015, the north, 
northwestern, and southeastern zone of Jaunpur, Allahabad, and Sant Ravidas Nagar 
showed low groundwater level conditions. The western-most part of the Varanasi showed 
the transformation from low groundwater level conditions to very high groundwater level 
conditions. Still, in later decades the whole basin showed medium to very high ground-
water level conditions. The result illustrates that the eco-environment of the groundwater 
system of the Varuna river basin will drop substantially in future periods. Subsequently, 
the acceleration in present society in economic, industrial, and agricultural growth claims 
a significant surge in groundwater demand in this region. Hence shortly, the decline rate 
and magnitude may be in an advanced form. In that case, the long-term prediction alerts 
about future damage may help initiate the proper water management through efficient  
planning. Based on the present groundwater level baseline, the forthcoming groundwater 
level needs a regular recharge to maintain. It may help to reverse the groundwater gradient 
and improve the damaged groundwater ecosystem. According to the physical and socio-
economic characteristics of the study area, we implement feasible mitigation plans.

Fig. 5  Results of Training and Test Set for (a) single BLSTM and a straight LSTM (b) single BHLSTM and 
a straight LSTM (c) Stack of four BLSTM and a straight LSTM (d) Stack of four BHLSTM and a straight 
LSTM (e) Stack of five BHLSTM
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4  Conclusion

The present study was designed and attempted to predict the long-term groundwater level, 
which involved deep-stacked BHLSTM model architectures. The proposed model can learn 
and remember information for an extended period due to forward and backward dependen-
cies. The presence of a highway network enhances its performance. The proposed model 
provides satisfactory performance in predicting the groundwater level. The increase in 
stack size in nondynamic prediction and stack size increments and a straight LSTM layer 
in dynamic prediction can improve the model’s performance. The efficiency of dynamic 
prediction with a stack of four BHLSTM and a straight LSTM has proven to be  the most 
appropriate architecture to predict the groundwater level for a long-term basis (20 years). The  
efficient architecture experimented over the Varuna river basin. Predicted values reveal that 
the river basin will face groundwater scarcity in the near and distant future, demanding proper  
sustainable groundwater planning to maintain prolific groundwater sources. Proper scientific 
conservation techniques for surface water and efficient irrigation techniques to reduce excess 
water stress should be implemented as early as possible. Low water consuming plants, water  
recycling facilities, water tariffs, domestic and industrial water-saving practices must sustain  
and maintain the equilibrium water balance condition so far and future.

Eventually, the proposed algorithm works pretty well in predicting the groundwater 
level. Predictions have not performed well if the number of data points decreases in these 
cases. Moreover, the proposed model can apply to other spatial and temporal prediction 
approaches, such as water quality changes, surface runoff, and base flow changes in hydro-
logical studies.
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