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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Mortality estimate of black carbon 
aerosols and multiple trace gases are 
reported. 

• Mortality estimate was particularly high 
for BC followed by NO2 levels. 

• All the pollutants showed significant lag 
effect between lag 0–1 and lag 0–6 days. 

• Synergistic effect was noted when BC, 
Res.PM2.5 and NO2 were combined. 

• Mortality estimates of BC aerosols, 
PM2.5 and NO2 were higher during hazy 
days.  
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A B S T R A C T   

The short term effect of multiple air pollutants e.g. aerosols (black carbon, BC; PM2.5 and PM10) and trace gases 
(NO2, SO2, and O3) on all-cause mortality was systematically investigated in a typical urban pollution hotspot 
over central Indo-Gangetic Plain (IGP). To our knowledge, this would be the first report of mortality estimates for 
exposure to BC aerosols and multiple trace gases over South Asia. Daily all-cause mortality and ambient air 
quality were analyzed from 2009 to 2016 following a semiparametric quasi-Poisson regression model adjusting 
mean temperature (Tmean), relative humidity (RH), and long term time trend (Time) as potential confounders. 
Single pollutant model clearly established the significant impact of BC aerosols (against 10-unit increase in 
pollutant; 4.95%, 95% CI: 2.16–7.74), NO2 (2.38%, 95% CI: 0.88–3.87%) and PM2.5 exposure (1.06%, 95% CI: 
0.45–1.66%) on mortality. The inclusion of co-pollutants in the multi-pollutant model increased the individual 
mortality risks for BC aerosols (7.3%). Mortality estimates were further stratified considering different effect 
modifiers viz. sex, age, place of death, and season. Almost in all the cases statistically insignificant differences in 
effect modification were noted for all the pollutants except PM10. We also explored a distributed lag nonlinear 
model to estimate the lag effect and all the pollutants showed significant lag up to 3 days while BC showed lag 
effect up to 5 days. The exposure-response curves for individual air pollutants were mostly linear, while a 
considerable increase in mortality was noted for an exposure >15 μg m− 3 for BC aerosols and >60 μg m− 3 for 
PM2.5. The effect estimates of air pollutants during haze and no-haze days were also defined. During haze days, 

* Corresponding author. Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, India 
E-mail addresses: tb.iesd@bhu.ac.in (T. Banerjee), rkmall@bhu.ac.in (R.K. Mall).  

Contents lists available at ScienceDirect 

Atmospheric Environment 

journal homepage: http://www.elsevier.com/locate/atmosenv 

https://doi.org/10.1016/j.atmosenv.2020.118088 
Received 25 April 2020; Received in revised form 9 November 2020; Accepted 19 November 2020   

mailto:tb.iesd@bhu.ac.in
mailto:rkmall@bhu.ac.in
www.sciencedirect.com/science/journal/13522310
https://http://www.elsevier.com/locate/atmosenv
https://doi.org/10.1016/j.atmosenv.2020.118088
https://doi.org/10.1016/j.atmosenv.2020.118088
https://doi.org/10.1016/j.atmosenv.2020.118088
http://crossmark.crossref.org/dialog/?doi=10.1016/j.atmosenv.2020.118088&domain=pdf


Atmospheric Environment 246 (2021) 118088

2

mortality rose to 6.11% and 3.06% for each 10-unit increase in BC and NO2 exposure, respectively. Significant 
effect of BC aerosol exposure on human mortality was established which reaffirms its inclusion as a potential 
health regulator for epidemiological studies.   

1. Introduction 

Exposure to air pollution has been linked with many negative health 
impacts including cardiovascular and pulmonary diseases, neonatal 
conditions, bronchitis, asthma, and lung cancer (Cohen et al., 2005; 
Lelieveld et al., 2015). Both acute and chronic exposures to air pollut-
ants has been reported to have negative implications on human health 
(Balakrishnan et al., 2019; Huang et al., 2018). However, most of the 
pollutions based epidemiological studies essentially relate exposure to 
particulate mass concentration (PM10 and/-or PM2.5) that invariably 
generalize all particulates with equal toxicity without distinguishing 
individual by its source and composition, which genuinely have 
different health consequences (Tuomisto et al., 2008; Cao et al., 2012; 
Lelieveld et al., 2015; Singh et al., 2020). Only a few researchers viz. 
Janssen et al. (2011), Cao et al. (2012), Geng et al. (2013), Wang et al. 
(2013), and Lelieveld et al. (2015) have explored health implications 
caused by the exposure of multiple air pollutants and individual par-
ticulate type (like desert dust and smoke). 

Among many air pollutants, airborne fine particulates (PM2.5) are 
most frequently reported to be associated with negative health impacts 
especially in terms of mortality and morbidity; both globally (Smith 
et al., 2009; Janssen et al., 2011; Cao et al., 2012) and over India 
(Chowdhury et al., 2018; Balakrishnan et al., 2019; Saini and Sharma 
2020). Particulates emitted exclusively from the combustion processes 
viz. combustion of wood, residential oil, coal, and petroleum are mostly 
toxic and are frequently associated with adverse health effects (Krzy-
żanowski et al., 2005; Cao et al., 2012; Thurston et al., 2013), compared 
to the particulates from non-combustion sources (like crustal emissions, 
sea salt). This has been specifically emphasized in the context of black 
carbon aerosols (BC) or in some cases as elemental carbon (EC) which 
are short-lived climate-forcer with primary emissions from residential 
combustion and automobile sector. The sources of BC aerosols varies 
spatially as residential combustion of biomass/biofuels like dried animal 
manure, coal, wood, and agricultural waste are primarily responsible for 
BC emissions over India (Venkataraman et al., 2005) compared to the 
automobile exhaust emissions over Europe and North America (Bond 
et al., 2004; Klimont et al., 2017). Large number of epidemiological 
studies provide extensive evidences of significant positive association of 
BC exposure with cardiopulmonary morbidity, respiratory mortality and 
other adverse health impacts (Hennebergeret al., 2005; Ostro et al., 
2007; Smith et al., 2009; WHO, 2012; Geng et al., 2013; Wang et al., 
2013; Janssen et al., 2011; Luben et al., 2017; and references therein). 
Exposure to BC aerosols typically causes inflammation in pulmonary 
tissues inducing a range of mediators altering cardiac functions, or 
irritant receptor-mediated stimulation of parasympathetic pathways 
(Smith et al., 2009). It also influences myocardial repolarization leading 
to the risk of sudden cardiac death (Hennebergeret al., 2005), depres-
sion of ST-segment (Gold et al., 2005), and inflammation of the airway 
through high nitric oxide exhalation (Mar et al., 2005). Black carbon 
shows higher association with cardiovascular mortality compared to 
other aerosol components and serves as a better health indicator against 
total particulate mass (Roemer and Van Wijnen, 2001; Lipfert et al., 
2006; Janssen et al., 2011; WHO, 2012). However, health specific im-
pacts of BC are not spatially consistent and vary significantly in different 
locations and for communities. Likewise, for multi-pollutant health 
studies, using county-level data over the USA Lipfert et al. (2006) re-
ported a highest impact of elemental carbon (EC) on all-cause mortality, 
followed by nitrate; Cao et al. (2012) found nitrate to demonstrate the 
strongest association with all-cause and cardiovascular mortality in 
Xi’an while Smith et al. (2009), considering 18-years nationwide data 

over the USA, showed a stronger effect of EC on mortality in combina-
tion with sulfate and ozone exposure. 

The health effects in terms of mortality due to BC aerosol exposure 
have never been evaluated in India except studies on cross-sectional 
associations between BC with blood pressure and hypertension (Curto 
et al., 2019). Availability of city-specific health statistics like 
cause-specific mortality and morbidity is limited over the Indian cities, 
so is the BC mass concentration which is measured only over a few urban 
environments across India. In contrast, systematic monitoring of other 
air quality parameters (PM2.5, PM10, NO2, SO2, and O3) is now functional 
over most of the Indian cities under the National Air Quality Monitoring 
Programme. This motivated us to evaluate the individual as well as the 
cumulative impact of BC aerosol, fine (PM2.5), and coarse (PM10) par-
ticulates, and trace gases (SO2, NO2, O3) on premature mortality in an 
urban pollution hotspot in Northern India. Our analysis was novel as 
only few studies over India have evaluated the effect of multiple air 
pollutants on mortality (Jayaraman and Nidhi, 2008; Maji et al., 2017) 
while none considering the individual particulate types (like BC 
aerosols). 

The manuscript reports the short-term effect of BC aerosols along 
with other criteria air pollutants on mortality using time series data from 
a typical urban pollution hotspot over Indo-Gangetic Plain (IGP), South 
Asia. Besides, we also investigated the effects of air pollution on the 
short-term mortality risk during haze and no-haze days. Haze is a typical 
environmental condition under which the exposure to air pollutants 
(particularly fine particulates) increases excessively. There are many 
inferences regarding negative health impacts of haze on human health, 
as reported in Hong Kong (by Chak Ho et al., 2018), Guangzhou (by 
Zhang et al., 2014), and in Beijing (by Zhang et al., 2015 and Liang et al., 
2017). However, over South Asia, there is no report on the possible 
impact of haze on human mortality. Considering such limitations, we 
tried to establish the impact of haze on human mortality, constrained by 
the impact of individual air pollutants. To the best of our knowledge, 
mortality estimates of BC aerosol were reported for the first time over 
South Asia which may have greater implications in prioritizing early 
warning systems, and in developing mitigation/- adaptation policies 
over the region. 

2. Material and methods 

2.1. Study area 

Entire South Asia has been documented to have an excessive burden 
of air pollutants with many associated sources like biomass and waste 
burning, automobile emissions and, soil and desert dust (Singh et al., 
2017, and references therein). However, the northern part of this 
geographical region, the IGP, often remains the center of investigation 
focusing on the air pollution-agriculture-health-sustainability nexus. It 
is one of the most fertile regions of the world, accounting for a major 
fraction of India’s food production and sustains 60% of India’s popula-
tion that is primarily sensitive to changing climate (Mall et al., 2018; 
Sonkar et al., 2019) and pollution-related health impacts (Chowdhury 
et al., 2018). 

The study was conducted in Varanasi (25◦16′N, 82◦59′E; 82 m MSL), 
a typical urban pollution hotspot in central IGP (Fig. S1) which expe-
riences very high aerosol loading (decadal mean aerosol optical depth, 
AOD±SD: 0.67 ± 0.28; annual mean PM2.5: 82 ± 66 μg m− 3) and trace 
gas concentrations throughout the year (Murari et al., 2017; Shukla 
et al., 2017; Kumar et al., 2018). Decadal increasing trends both in AOD 
(0.017 year− 1; Kumar et al., 2018) and BC aerosols (0.9 μg m− 3 yr− 1; 
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Manoj et al., 2019; Srivastava et al., 2019) are concurrent with the 
population growth rate of Varanasi (17%). The city supports a popula-
tion of 12 million (MHA, 2011), with a very high population density (14, 
598 Km− 2). Varanasi itself has numerous kinds of air pollution sources 
but emissions from biomass and backyard incineration, automobiles, 
household emissions, soil, and road dust resuspensions are the domi-
nating ones (Murari et al., 2020; Singh et al., 2021). Besides, there is 
evidence of the prevalence of a subsidence zone over the central IGP by 
prevailing westerly which also facilitates the gradual accumulation of 
air pollutants over the region (Di Girolamo et al., 2004; Kumar et al., 
2018). The city represents a humid subtropical climate with four distinct 
seasons: winter (DJF), summer (pre-monsoon, MAMJ), monsoon (JAS), 
and post-monsoon (ON); summer is relatively hot and dry, winter is cold 
and humid while monsoon accounts for the major proportion of annual 
precipitation. 

2.2. Data 

Daily mortality data (excluding accidental mortality) between 
January 1, 2009, and December 31, 2016, for Varanasi city, was 
collected from the Municipal Corporation of Varanasi. Mortality data 
were classified following the International Classification of Diseases 
10th revision (ICD10) into all-cause mortality (A00–R99), mortality due 
to cardiovascular diseases (I00–I99), and respiratory diseases (J00-J98). 
The mortality data were also classified according to age (≤4, 5–44, 
45–64, ≥65 years), sex (male/female), and place of death (institutional 
and non-institutional deaths) (Singh et al., 2019). Meteorological data, 
including mean temperature (Tmean), relative humidity (RH), and 
precipitation were obtained from the India Meteorological Department, 
New Delhi. The daily visibility data was assessed from 
ASOS-AWOS-METAR dataset maintained by Iowa Environmental Mes-
onet (IEM). 

Ambient air quality data for PM2.5, PM10, NO2, SO2, and O3 
(2009–2016, all-inclusive) was acquired from Real-time Air Quality 
Data inventory of the Central Pollution Control Board (CPCB), available 
at https://app.cpcbccr.com/ccr. The CPCB air quality monitoring sta-
tion is close to the city center and represents emission sources of the city. 
Initially, the hourly concentration of each pollutant was checked for 
quality and was averaged for 24 h. Pollutant concentrations above 
97.5% CI and below 2.5% CI of the 8-year annual average concentration 
was excluded from the analysis (as outliers) to avoid unexpected coef-
ficient of association and unspecified events. Real-time black carbon 
(BC) mass concentration at 880 nm was measured using Aethalometer 
(AE42, Magee Scientific, USA) within the Banaras Hindu University 
(BHU) campus. The BC monitoring station mainly encompasses emis-
sions from residential and commercial activities, while both the stations 
(BHU and CPCB) also receive contributions from biomass burning, road 
dust, and other emissions sources. A detailed discussion on BC mea-
surement protocol and related uncertainties are discussed in Kumar 
et al. (2017) and Singh et al. (2018). 

Both BC and PM2.5 have missing observations due to instrumental 
error, power issue, and instrument calibration which was later modelled 

to fill the gaps. Two models were constituted to impute the missing 
PM2.5 (24%) and BC (32%) concentrations. Modelled data were vali-
dated using the 10-fold cross-validation (CV) method to avoid potential 
over-fitting. The training dataset was randomly split into 10 subsets each 
containing approximately 10% of the data. In each round of CV, nine 
subsets were used for model fitting and the rest for validation. The 
missing PM2.5 was imputed by fitting a generalized additive model using 

PM10 as a main predictive variable, adjusted to the time-varying non- 
linear meteorological variables (temperature and relative humidity). 
Fig. S2 shows the correlation between the observed and predicted PM2.5. 
The fitted model showed a good agreement with the daily mean PM2.5 
(R2:0.89; RMSE 28.57). It should be noted that the predicted values were 
only used to fill the missing PM2.5 when PM10 concentrations were 
available. 

The missing BC data were imputed using a Random Forest machine 
learning algorithm considering BC mass concentration as a function of 
measured PM2.5 and carbon monoxide; as both represent emissions 
primarily from the combustion sources. To take into account the diurnal 
variation of BC concentration, hourly concentration was initially 
modelled, before averaging it to 24 h. Fig. S3 (a, b) shows the scatter plot 
of the 10-fold cross-validation and the test unseen results for BC. The 
performance of the fitted random forest model shows good agreement 
for both the 10-fold cross-validation method and the unseen test dataset. 
The CV and test results indicate that the random forest model well 
estimated the hourly BC concentration (R2: 0.77; RMSE: 4). The daily 
predicted BC values (Fig. S4) showed lower RMSE (2.38) and higher R2 

(0.87) compared to hourly observation. The modelled BC observation 
was only used to fill the missing value when observed PM2.5 was 
available. 

2.3. Statistical methods 

Time-series analysis with a semiparametric quasi-Poisson regression 
model was used to assess the effect of single and multiple air pollutants 
on daily mortality. In a single-pollutant model, we introduced one 
pollutant at a time as a linear term. The model was controlled for sea-
sonality, long-term trend (Peng et al., 2009), and potential non-linear 
confounding effects of Tmean and RH (Chen et al., 2012) using penal-
ized cubic smoothing spline. The purpose of adjusting temporal effects 
was to eliminate time trends and seasonality from the mortality count 
and to estimate the effects of short-term change in exposure. The con-
founding effects of a day of the week and the public holiday didn’t 
contribute significantly to the model and thus excluded (Table S3). 

Log{E[(Mortalityt)]}= α+ βP(t) + f1(RHt)+ f2(Tmeant) + f3(Timet) (1)  

where, β is the regression coefficients corresponding to the air pollutant 
“P” (BC, PM10, PM2.5, SO2, NO2, and O3) over time’t’; f1, f2, f3 are the 
smoothed function (penalized cubic smoothing spline) of nonlinear 
confounding factors such as time, RH and Tmean. For each of the 
nonlinear components in the above and rest of the analysis, a penalized 
cubic smoothing technique was used and degrees of freedom (df) were 
estimated by the algorithm based on Generalized Cross Validation (GCV) 
score (Hastie and Tibshirani 1990). Hence, we allowed the algorithm to 
choose suitable df based on cross validation referred to as estimated 
degrees of freedom (edf). 

In the multipollutant model, we considered residual PM2.5 (Res. 
PM2.5), BC, and NO2 together as linear terms in the core model.  

where β1 to β3 are the regression coefficients corresponding to the air 
pollutants Res.PM2.5, BC, and NO2 over time ‘t’; rest remained identical 
as in equation (1). To obtain the Res.PM2.5, we regressed the PM2.5 
against BC, SO2, and NO2 where all three were added together in the 
core model as a linear term. The predicted PM2.5 was subtracted from 
the observed PM2.5 to get the residual PM2.5. Thus, the PM2.5 concen-
tration contributed due to other sources than BC, NO2, and SO2 were 

Log{E[(Mortalityt)]}= α+ β1ResPM2.5 (t) + β2BCt + β3NO2 (t) + f1(RHt)+ f2(Tmeant) + f3(Timet) (2)   
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termed as ‘Res.PM2.5. Since the average SO2 level was much lower than 
the national standard (Fig. 1c) and as both SO2 and O3 did not show any 
significant association with all-cause mortality, we excluded them 
further. We have included NO2 along with BC to predict PM2.5 to ac-
count for the gas to particle conversions of NO2, both via homogeneous 
and heterogeneous reactions, which frequently constitute a greater 
fraction of particulate mass (Hodan and Barnard, 2004). Here, partial 
determination of NO2, SO2, and BC with PM2.5 were 0.38, 0.09, and 0.37 
respectively (Table S4). 

To investigate the implication of pollutant concentrations measured 
during haze and/- no-haze days on daily mortality, we followed the 
single pollutant model with subset haze days and no haze days. A “haze 
day” was defined as a calendar day when the visibility is < 5 km for at 
least 1 h, relative humidity <95%, with no fog, no mist, and no pre-
cipitation (Ho et al., 2018). We also explored the interaction between 
haze and no haze day and pollutant concentration but no significant 
effect on all-cause mortality was evident (not included in the text, 
Table S5). 

To account for the effect modification by individual characteristics in 
the air pollutant-mortality association, we fitted equation (1) separately 
for each factor such as age, gender, place of death, and season as a 
dependent variable keeping the rest unchanged (as in equation (1)). 
Regression coefficients for age/-gender/-place of death/-season were 
compared within the group by Wald χ2-test to measure for equality 
assuming independence across the group (Diggle et al., 1994). To test 
the robustness of the results, we also performed different sensitivity 
analyses. The time lag effects of individual pollutants were established 
by exploring a restricted distributed lag model for 7 days’ lag with a 
polynomial of degree two for Eq. (1) (Schwartz, 2000). Besides, we 
explored the sensitivity of the RR estimate to the time lag effect of 
temperature (Tmean) and RH up to 5 days lag using the single and cu-
mulative lag model and 5 days (Lag 1 to Lag 5) mean value to control for 
the confounding effects of previous day’s temperature and RH in the 
core model (Eq. (1)). To do so, the Eq. (1) was adjusted for different 
temperature lag one at a time (Lag 1 to Lag 5) for the single lag model 
and by adding the next lag each time in the cumulative lag model (lag 0 
+ lag 1, lag 0 + lag1 + lag 2 …. .) keeping RH at the current day. After 
comparing the temperature lag models the one with the highest devi-
ance explained and lowest coefficient of variation was selected as the 
best fit, and the same process was repeated for RH fixing Tmean at lag 1 
for BC and PM2.5, Lag 3 for PM10 and lag 0 for NO2. 

The choice of degrees of freedom (3–6 degrees of freedom) of tem-
poral effect on mortality were analyzed too. We have also explored the 

association of air pollutants with cause-specific mortalities, but due to 
under-reporting and/-or absence of robust cause-specific mortality data, 
results remained inconclusive, therefore, not reported. We have also 
checked different lag days in the core model, and find that the effect 
estimates on the same day are much robust than considering lag days 
based on deviance explained, standard error, GCV score as well as the 
width of the confidence interval. Hence we considered same day expo-
sure in the core model for the entire analysis. 

The dose-response curve for different air pollutants was generated to 
explore the possibility of a nonlinear relationship (as a potential viola-
tion of linearity assumption between mortality and pollutant in the core 
model) to observe the changes in mortality caused by the different levels 
of pollutant exposure. We refitted our core model (equation (1)) as 
follows: 

Log{E[(Mortalityt)]}= α+ f (P(t))+ f1(RHt)+ f2(Tmeant) + f3(Timet)

(3)  

where f (P(t)) is the smooth function of the average pollutant concen-
tration on day t; rest remain unchanged. The degrees of freedom were 
selected based on the GCV score. 

All the results from the above analysis were presented as per unit 
change in pollutant concentration and/-or percent change in mortality 
per ten-unit change in pollutant concentration with 95% confidence 
interval (CI). All data were analyzed by statistical software R version 
3.5.1 (R Core Team, 2018); using the R -package “mgcv” (version 
1.8–18.) (Wood, 2006), random forest, and “dlnm” (version 2.3.2.) 
(Gasparrini, 2011). The statistical tests were two-tailed and result with 
p-value < 0.05 were considered statistically significant. 

3. Results and discussion 

Summary statistics for mortality data, air pollutants, and weather 
variables are included in Table S1. In between the eight years 
(2009–2016), a total of 64,712 non-accidental deaths were considered 
for the analysis that showed a daily mean (±SD) mortality of 22 (±6) 
with more male decedents (60%). Overall, cardiorespiratory mortality 
(RD and CVD) accounted for 3.4% of total non-accidental mortality, 
65% of which were male. 

A very high concentration of almost all the pollutants was noted 
throughout, particularly during ON and DJF (Fig. 1). The annual mean 
(±SD) concentration of PM2.5 and PM10 was 104 (±86) and 219 (±135) 
μg m− 3 respectively; well above the national (PM2.5, 40 μg m− 3; PM10, 

Fig. 1. Time-series graph for air pollutants and all-cause mortality in Varanasi.  
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60 μg m− 3; NAAQS 2016) and WHO (PM2.5, 10 μg m− 3; PM10, 20 μg m− 3; 
WHO 2005) permissible limits. Other air pollutants (BC, NO2, and SO2) 
that have direct emissions especially from the combustion sources, have 
also recorded a very high mixing ratio with considerable seasonal var-
iations. The annual mean (±SD) BC aerosols based on 24 h average 
concentration measured between 2009 and 2016 was 9.7 (±6.3) μg m− 3, 
while the daily mean range in between 0.02 and 19.2 μg m− 3. The 
correlation coefficients for the air pollutants ranged from 0.50 to 0.86 
and the detailed description is provided in Table S2. Daily variations in 
BC concentration were more closely associated with PM2.5 and NO2 (r >
0.5), indicating their similarity in origin, predominately being emitted 
from vehicle exhaust and biomass burning. A total of 1958 days were 
classified as haze days (67% of total), with a slightly declining trend for 
the year 2016 (214 days) compared to 2009 (238 days). Overall, haze 
days accounted for a total of 43,753 all-cause mortality, 3.4% of which 
were diagnosed for cardiorespiratory diseases (RD and CVD) compared 
to 0.7% for no-haze days. Interestingly, haze days were frequent both 
during summer (554) and winter months (472) compared to the rest of 
the year. Characteristically, the concentration of PM10, PM2.5, and BC 
was particularly high during haze days with 58%, 65%, and 36% in-
crease respectively in their mean concentration compared to the no-haze 
days (Fig. 1). 

3.1. Mortality risk of air pollutants 

3.1.1. Single pollutant model 
The results from the generalized additive model described in eq. (1) 

for a single pollutant model with estimated degrees of freedoms 
approximately 9, 7, and 3 for time, temperature, and relative humidity 
respectively are shown in Fig. 2. The result compares the individual 
effect of air pollutants on mortality. For every 10-unit increase in 
ambient concentration of individual pollutant, mortality was enhanced 
by 4.95% for BC aerosols (95% CI: 2.16–7.74%), 2.38% for NO2 (95% CI: 
0.88–3.87%) and 1.06% for PM2.5 (95% CI: 0.45–1.66%). In compari-
son, the effect estimates for PM10 on all-cause mortality was relatively 
low (0.26%, 95% CI: 0.13–0.38%). For the rest of the pollutants (SO2 

and O3), the effect on mortality was statistically insignificant and had a 
minimum individual impact (<1.4%), therefore SO2 and O3 were not 
included in stratification analyses. Evidence from this study showed that 
the current level of black carbon concentration in Varanasi is signifi-
cantly associated with all-cause mortality which vowed it to consider as 
a potent health indicator of air pollution exposure compared to other 
matrices. However, when BC and PM2.5 were compared for change in 
effect per interquartile range, the effect of PM2.5 was higher than BC as 
BC is a constituent of PM2.5 and thus PM2.5 shows the cumulative effect 
due to particles that have a diameter less than 2.5 μm including BC. Our 
estimate for Varanasi was lower compared to the estimates reported by 
Janssen et al. (2011) for each 10 μg m− 3 increase in PM2.5 (1.9%) and EC 
(14.5%) using pooled analysis for all-cause mortality (Klemm et al., 
2004; Ostro et al., 2007; Cakmak et al., 2009). Also, Smith et al. (2009) 
reported a 1.006 and 1.06 relative risk of all-cause mortality for each 1 
μg m− 3 increase in long-term exposure to PM2.5 and EC respectively over 
the USA. In contrast, when compared against the individual composition 
of PM2.5, Ostro et al. (2007) found no statistical evidence of the impact 
of EC on all-cause mortality in California but had the highest impact on 
cardiovascular mortality, followed by nitrate aerosols. Cao et al. (2012) 
in Xian, China also reported the highest individual impact by nitrate 
aerosols on all-cause and cardiovascular mortality followed by EC. 

After BC, NO2 was another important pollutant to influence mortality 
in Varanasi. Both cross-sectional and longitudinal studies indicate NO2 
as a robust indicator of traffic pollution which induces impairment of 
lung function, exacerbation of asthma and non-asthma respiratory 
symptoms, and other cardiovascular complications. However, it should 
be noted that although we find a statistically significant association 
between mortality and NO2 exposure, a considerable level of uncertainty 
still exists for a time-series analysis as often impacts of NO2 are 
complicated by the co-existence of other pollutants, especially by par-
ticulate matter and ozone. 

3.1.2. Multiple pollutant model 
We also explored the change in mortality by concurrent exposure to 

multiple air pollutants, because the individual impact of pollutants is 
exceedingly rare in the real-world, and pollutants possibly induce ad-
ditive, synergistic or antagonistic impact when they co-exist in the 
environment. The variation in PM2.5 was partly defined by the indi-
vidual contribution of BC (37.8%), SO2 (9%), and NO2 (38.5%) while, 
the combined contribution of all three was 55.5% (Table S4). Therefore, 
to improve the power and stability in the multi-pollutant model, we did 
not introduce PM2.5 in the multi-pollutant model; instead, we used the 
residual of PM2.5 (Res.PM2.5), that excludes the variation in PM2.5 
attributed to BC, SO2, and NO2 but is contributed by some unknown 
sources. The result from the multi-pollutant model showed an increase 
in individual mortality risk of BC aerosols and Res.PM2.5 for all the 
concerned cases (Table 1). The effect estimates of BC increased the most 
(7.30%) suggesting it as an important health regulator in combination 
with Res.PM2.5 and NO2, followed by Res.PM2.5 (1.51%, 95% CI: 
0.71–2.31%), while being highly statistically significant. The effect es-
timates of NO2 reduced and became non-significant when adjusted for 
co-pollutants (0.77%, 95% CI: 1.88, 3.42%) which possibly indicated 
the more strong impact of BC and fine particulates on mortality risk 

Fig. 2. Percent change in mortality associated with 10-unit increase in air 
pollution exposure. 

Table 1 
Percent change in mortality with 10 μg m− 3 increase in exposure of BC, ResPM2.5 
and NO2.  

Variables Temp % Change in mortality (95% CI) 

All cause mortality ResPM2.5 1.51 (0.71, 2.31) 
BC 7.30 (2.33, 12.27) 
NO2 0.77 (− 1.88, 3.42) 

Note. Effects of different pollutants on mortality with 95% CI in terms of per-
centage change in mortality per 10- μg m− 3 change of pollutant. Values in bold 
are significant at p < 0.05. 
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compared to NO2. However, as discussed in section 3.1.1, the health 
impacts of NO2 often get complicated by the presence of aerosols, and 
there is evidence of both synergistic (Luben et al., 2018) and antago-
nistic effects (Yu et al., 2013) of NO2-aerosols association, particularly 
for complications related to cardiovascular diseases. 

Both single and multi-pollutant models established clear evidence of 
effect estimates of BC aerosols on human mortality. This is in line with 
the findings of other concurrent epidemiological researchers both over 
Asian (Cao et al., 2012; Geng et al., 2013; Wang et al., 2013) and global 
cities (Roemer and Van Wijnen, 2001; Henneberger et al., 2005; Smith 
et al., 2009; Janssen et al., 2011). Wang et al. (2013) concluded higher 
effect estimates for BC aerosols against PM2.5 and PM2.5-10 using a 
two-pollutant model in Shanghai, China. For the same city, the effect 
estimates for BC and PM2.5 are reported to increase from their individual 
estimates to 2.3%–4.9% and from − 5% to 2.4% respectively, when 
adjusted for one another (Geng et al., 2013). However, Hoek et al. 
(2000) reported a decrease in effect estimates for PM2.5 and BC in the 
Netherlands when compared against their individual impact. 

3.1.3. Mortality stratified by effect modifiers 
The population response in terms of change in mortality (in %) 

against 10-unit change in individual pollutant concentration stratified 

by means of age, sex, place of death, and season are included in Fig. 3. 
Both PM2.5 and PM10 induced greater mortality risk in male while the 
female population was affected more by NO2 exposure, and there was no 
variation in mortality risk by sex for BC aerosols. A similar nonsignifi-
cant estimate for sex of the targeted population was also reported by 
Bravo et al. (2015), Maji et al. (2017), and Geng et al. (2013) for other 
Asian cities. We noted a higher rate of change in mortality for elderly 
people (>65 years) particularly for BC (6.7%, 95% CI: 2.87, 10.43%) 
and NO2 exposure (4.1%, 95% CI: 2.12, 6.12%), while population within 
the age 5–44 years were more influenced by PM2.5 and PM10 exposure in 
addition to BC aerosols. However, within the group, differences were 
insignificant. In absence of socio-economic profile of the targeted pop-
ulation, we used place of death as a proxy (Zhang et al., 2017), 
considering non-institutional deaths as an indicator of low socioeco-
nomic condition, lack of health insurance and other health care facilities 
leaving them vulnerable to high pollutant exposure (Bravo et al., 2015; 
Singh et al., 2018). The difference between effect estimates for institu-
tional and non-institutional deaths was significant for all the pollutants 
except for BC. Non-institutional deaths were particularly high for PM2.5 
and NO2 exposure. The risk of mortality was further classified by sea-
sons. In winter we note a significant association of mortality with pol-
lutants. BC was associated with a 6.80 (95% CI: 2.37, 11.23%) increase 

Fig. 3. Air pollution exposure and mortality stratified by sex, age and regional climate.  
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in mortality during winter, while the association with PM2.5 was 3.73% 
(95% CI: 0.68, 6.79%), and with NO2 was 2.57% (95% CI: 0.13, 5.01%). 
However, there was an insignificant difference between regression co-
efficients in summer and winter. Also, the impact was low and insig-
nificant for the rest of the seasons (Fig. 3). Previous studies, in general, 
have shown that the effect of BC, particulate matter (PM10, PM2.5) and 
gaseous pollutant (SO2, NO2, and O3) were high during winter (Geng 
et al., 2013; Zhang et al., 2017). However, some studies have also 
concluded a higher effect of PM10 during summer (Guo et al., 2014). 

3.2. Sensitivity analysis 

Fig. 4 shows the visual interpretation of the distributed lag nonlinear 
model (dlnm) for each air pollutant. The lag effect varied by the days of 
exposure and remained statistically significant between lag 1 to lag 3 
days for PM2.5, PM10 and NO2 whereas, BC showed an extended lag 
effect up to 5 days. The cumulative risk of exposure for different air 
pollutants at different lag is also included in Table S6. We found an 
increase in cumulative risk with an increase in lag days that reached a 
maximum at lag 5 for BC (8.95%, 95% CI: 5.27–12.63%) and PM2.5 
(1.43 95% CI: 0.58, 2.28%), while NO2 displayed maximum risk at lag 2 
(3.00%, 95% CI: 1.35, 4.65) and decreased thereafter. This may typi-
cally indicate that the consequent effects of BC aerosols on human 
mortality extended till the 5th day of exposure, reported similarly (for 
lag 3) in Shanghai by Geng et al. (2013). In contrast, PM10 did not 
indicate any cumulative lag effect even after 0–7 days of exposure with 
the lowest attributable mortality varying between 0.28% and 0.34%. A 
single and cumulative lag model up to a 5-day lag and 5 days mean (Lag 
1 to Lag 5) for Tmean and RH was fitted, but no appreciable change was 
found in the estimates except for BC in temperature lag (Tables S7–S8). 
Further, the change of degree of freedom (3–6) of temporal effect on 
mortality did not significantly influence the coefficients (Table S9). 

3.3. Exposure-response curve 

The exposure-response curves with a 95% confidence interval for 
individual air pollutants are included in Fig. 5. A dose-response curve 
with two and three degrees of freedom was found for BC and PM2.5, 
respectively by minimizing the GCV score. However, the curve was 
found to be linear in the range of 0–7 and 12–15 μg− 3 for BC and above 
50 μg− 3 for PM2.5 (Fig. 5). All the pollutants exhibited an increase in 
mortality with a corresponding increase in exposure while the trend was 
not always linear. A considerable increase in the log mortality rate due 
to BC aerosols was evident for an exposure >15 μg m− 3. Similarly for 
PM2.5 exposure, the mortality rate remained almost constant for con-
centration <60 μg m− 3 but increased particularly beyond >60 μg m− 3. 

On contrary, the exposure-response curve for NO2 and PM10 was linear 
indicating a gradual increase in mortality with a corresponding increase 
in the level of exposure. For all the cases, the association remained 
significant and robust due to the narrow confidence band and estab-
lished the harmful effect of pollutants on human mortality. Although the 
exposure-response association is subject to the regional features like 
adaptability/resilience of the population, still we note a similar kind of 
exposure-response curve as reported in Jinan (Zhang et al., 2017), 
Shanghai (Wang et al., 2013), and in Delhi (Maji et al., 2017). 

3.4. Mortality risk during haze days 

In this section, we have established the impact of haze on human 
mortality, constrained by the impact of individual air pollutants. It 
should be noted that 68% of monitoring days (2009–2016) were haze 
days which accounts for both very high PM2.5 (mean ± SD: 62 ± 36 μg 
m− 3) and BC exposure (9.5 ± 5.5 μg m− 3) thereby, posing a significant 
threat to the human health. BC aerosols induce a severe impact during 
haze days with a 6.11% (95% CI; 2.91–9.31%) increase in mortality for 
every 10-unit increase in BC concentration (Table 2). Similarly, the ef-
fect estimates for fine particulates (1.77%, 95% CI: 1.05–2.50%) and 
NO2 (3.06%, 95% CI: 1.41–4.71%) during haze days were considerably 
high and significant. We also note a statistically significant effect of 
PM10 on human mortality during haze days accounting for a 0.38% in-
crease in mortality. In contrast, no significant association of mortality 
and air pollution was noted during no haze days. 

The higher effect of pollutants during haze established the role of BC, 
fine particulates, and NO2 exposure on pre-mature mortality in Vara-
nasi, which has also been reported over other Asian cities. Likewise, in 
Guangzhou, Liu et al. (2014) reported a 3.4–10.4% increase in air 
pollution-induced mortality during haze days; Goldberg et al. (2001) 
noted a 1.4% increase in mortality in Montreal due to incremental haze 
effects and in Hong Kong, Chak Ho et al. (2018) concluded a significant 
influence of haze events on mortality risk, especially for the population 
with mental and behavioral disorders. We also tried to isolate the sea-
sonal influence of haze events, as we hypothesized summertime haze to 
be mostly dominated by dust particles while wintertime haze consisting 
mainly of a higher amount of smoke particles (Banerjee et al., 2020). 
However, no statistically significant variation between the seasons was 
noted in Varanasi (data not shown). Such discrepancies in effect esti-
mates are reported in Guangzhou by Liu et al. (2014) with higher 
mortality, particularly during cold seasons. Therefore, we also conclude 
that it is critical to account for the individual effect of aerosol compo-
nents on mortality during haze days. 

Fig. 4. Lag patterns for air pollution exposure and risk of mortality.  
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4. Summary and conclusions 

The effect of multiple air pollutants including black carbon aerosols 
and trace gases (NO2, SO2, and O3) on all-cause mortality is reported for 
the first time over South Asia. We examined single and multi-pollutant 
effects on all-cause non-accidental mortality over a typical urban 
pollution hotspot at central IGP. The individual effect of BC, PM2.5, 
PM10, and NO2 exposure on total mortality was statistically significant. 
The combined exposure of BC, NO2, and PM2.5 (residual PM2.5) in the 
multi-pollutant model showed an increase in effect estimates compared 
to their individual exposure. Among the effect modifiers, both sex and 
season did not yield any significant differences except the exposure to 
PM10, while the population within the age group 5–44 years were at 
greater risk of air pollution-associated mortality. A delayed response of 
air pollutants on mortality was found that existed up to 0–7 lag days. 
Further, the dose-response showed an increase in total mortality with 
the increase in pollutant concentration that was not necessarily linear. 
The effect estimates of air pollutants based on haze and no-haze days 
showed higher non-accidental mortality and an increase in the indi-
vidual effect of air pollutants, particularly for BC and NO2 exposure 
during haze events. 

The study has two great strengths. Firstly, it considers exposure to 

black carbon aerosol and establishes its independent effect on all-cause 
mortality. The detrimental effect of black carbon aerosols remains to be 
duly acknowledged as limited evidence exists for BC and its effect on 
public health in India, if not over South Asia. Secondly, the study ana-
lyses the multipollutant exposure, which has been reported only over a 
few urban hotspots thereby, limiting our fundamental understanding of 
how air pollutants modify individual’s effects when they coexist in the 
environment. Besides, our analysis does include some limitations, 
especially in considering exposure data from a single monitoring station 
that could have led to some bias in the estimates. Also, the total mor-
tality could be underreported as not all deaths are registered, but we 
assumed that the registered deaths satisfactorily displayed the true 
burden of mortality. There is also a potential for residual confounding, 
particularly if there were unmeasured time-varying confounders with 
seasonal patterns that matched pollutants and mortality. Besides, the 
missingness in included covariates may also lead to bias. A relatively 
small number of cause-specific mortality data also limits associations of 
cause-specific mortality with pollution exposure. Also, the lack of in-
formation on individual characteristics of the population was unknown. 
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