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Abstract
Climate change (precipitation and temperature) has significantly affected the hydrological 
regimes and future climate projection. Integration of climate model with physical based 
model is crucial for quantitative measurement of changes in surface water regime. For accu-
rate estimation, modelling framework need finer scale resolution of climate model output. 
In this study, we examined the bias corrected, statistically downscale models drawn from 
the NASA, Earth Exchange Global Daily Downscaled Projections–Coupled Model Inter-
comparison Project Phase 5 (NEX-GDDP-CMIP5) over the study region. The rainfall and 
temperature projection output from the INMCM-4, MRI-CGCM3 and their ensemble mean 
performed well over the Mahi River basin (MRB), India. In this study, the climate data 
integrated with the SWAT model to analyse the potential impact of climate change on the 
discharge of MRB. The finding indicates that in the near future (2011–2040) projection of 
annual average streamflow increases by 76.74% based on the INMCM-4 outputs, 25% based 
on the MRI-CGCM3 outputs, and 24.53% based on the ensemble mean in comparison to the 
baseline period (1981–2010). Further, the modelling results of mean monthly streamflow 
in rainy season indicated that the lowest and highest streamflow changes will be ranging 
from about 631.07–2718.42  m3/s as observed by INMCM-4, 491.71–2938  m3/s observed 
by MRI-CGCM3, 513.02–2270.18  m3/s observed by ensemble mean, in the near future. 
Similarly, in the summer season, the lowest level of stream flow is found to be 158.27  m3/s 
observed by MRI-CGCM3, 193.38  m3/s (ensemble mean) and 258.53  m3/s (INMCM-4), 
respectively. Additionally, the streamflow trend was assessed by Mann–Kendall and Sen’s 
slope method at the monthly, seasonal and annual scales. The future streamflow projec-
tion represented the ascending trend observed in south west and winter monsoon, while the 
descending trend was observed in pre-monsoon and post-monsoon under the INMCM-4, 
MRI-CGCM3, and ensemble mean. Results on projected precipitation, temperature and 
streamflow accretion would help to develop effective adaptation measures for reducing the 
impacts of climate change and to work out long-term water resource management plans in 
the river basin.
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1 Introduction

Water availability is an important criterion for deciphering the ecological, economic and 
geophysical level of a region (Barthel et al. 2010). The climate variation has a great impact 
on the trend and pattern of precipitation and temperature, which can significantly alter the 
hydrological processes of precipitation extreme, increasing evaporation and changing river 
runoff (Islam et al. 2012; Sabzevari et al. 2015) etc. These climate changes directly affect 
the hydrological system in several ways. Firstly, it can affect the water supplies in differ-
ent fields, for instance, in agricultural, industrial and drinking purposes (Veijalainen et al. 
2010). Secondly, natural hazards like floods and drought can impact the social lives of peo-
ple and the economy of a nation (Ahsan et al. 2016). Therefore, the assessment of climate 
change impact is necessary for the hydrological regime of water resource development. In 
this context, downscaled GCMs climate models are an appropriate tool for understanding 
and evaluating climate change in the past and future. The downscaled GCMs output gener-
ates higher spatial resolution climate parameters by incorporating local topographic and 
physical factors, which make the GCMs more suitable for regional and local hydrological 
impact studies. Worldwide extensively application of downscaled GCMs (Narsimlu et al. 
2013; Sunde et al. 2017; Bhatta et al. 2019; Bermúdez et al. 2020; Oo et al. 2020; Touseef 
et al. 2020; Ji et al. 2021) gain popularity due to accurate and reliable estimation of future 
earth climate scenarios. In this context, downscaled GCMs, including CMIP5 is better 
advanced to be used for hydrological modelling at the catchment level. The physical based 
hydrological model Soil and Water Assessment Tool (SWAT) has been extensively applied 
for evaluating the basin hydrology under different climate change scenarios at the global 
level. (Narsimlu et al. 2015; Uniyal et al. 2015) Examine the impact of climate change on 
water balance of the Baitarani river basin using SWAT model results suggested that surface 
runoff ranged from 2.5 to 11% by changing the temperature from 1 to 5 0C, whereas the 
increase in rainfall by 2.5 to 15% from the baseline condition.

Recently, NASA has launched the NEX-GDDP datasets, downscaled climate scenar-
ios from the Coupled Model Intercomparison Project Phase 5 (CMIP5) (Raghavan et al. 
2018).The data has been statistically bias-corrected and has a high spatial resolution of 
0.250 × 0.250 and is available in daily time steps, which has been proven to be a prom-
ising source of climate projection at both regional and local scales (Sarthi et  al. 2015; 
Parth Sarthi et  al. 2016; Raghavan et  al. 2018; Sahany et  al. 2019; Kumar et  al. 2020). 
For example (Usman et al. 2021) applied NEX-GDDP inputs to simulate the hydrological 
model under the historical and future scenarios (under the RCP 4.5 and RCP 8.5 emis-
sion scenarios). The results reported that projected streamflow decreased significantly over 
the Son river basin. (Li et  al. 2020) assessed NEXGDDP datasets to predict future run-
off and flood risk by using the SWAT model. The forecast result indicated that the return 
period of extreme runoff will increase by 10% ~ 25% under the eight climate models in 
2050. Similarly, (Xu et al. 2021) reported the average annual precipitation and the average 
annual temperature would both increase, but the mean annual streamflow would decrease 
during 2021–2050, over the Amu Darya River Basin. (Musie et  al. 2020) compared the 
CORDEX-AFRICA and NEX-GDDP data over the Lake Ziway sub-basin, Ethiopia. 
The analysis indicated that all the climate model of NEX-GDDP are not well performed 
over the region. While the annual average streamflow of CORDEX-AFRICA dataset, is 
expected to increase towards the end of the century under both climate scenarios (RCP4.5 
and 8.5). (Jain et al. 2019) also evaluated the 1975–2005 daily data of NEX-GDDP using 
the India Meteorological Department observations and compared the dataset with CMIP5 
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and CORDEX data over India. They also supported the use of NEX-GDDP datasets for 
regional-scale climate change impact studies. To this end, an integrated approach of high-
resolution climate change scenarios with the hydrological models will provide useful 
insights for impact assessment in terms of the quantity of the water resource.

Therefore, the main aims of this study are to understand how future climate will alter 
the streamflow of the Mahi River Basin (MRB) that can be achieved by the following 
objectives: The first objective is to evaluate the performance of the six models namely; 
GFDL-CM3, INMCM-4, MPI-ESM-LR, MRI-CGCM3, CanESM2, GFDL-ESM2M and 
ensemble mean of the NEX-GDDP-CMIP5 with observed datasets. The second objective 
is to forecast the future average monthly and annual streamflow coupled with the SWAT 
model. In Gujarat, MRB is the largest west flowing perennial river with great ecological, 
economic, religious, and aesthetic significance. Further, MRB is the principal source of 
water supply for drinking, agricultural and industrial etc. uses. Several studies have been 
conducted (Sridhar 2009; Sahu et al. 2016; Pawar and Hire 2018; Bhati et al. 2021; Das and 
Scaringi 2021), which the main focus on rejuvenating and sustaining the basin, strength-
ening the agricultural economy and livelihood etc. Unfortunately, no previous study was 
reported to examine the climate change on the river’s streamflow. Thus, this innovative 
study quantifies the importance of the SWAT model for the prediction of riverine stream-
flow under a future climate using new bias-corrected and finer-resolution climate datasets 
of NEX-GDDP-CMIP5.

2  Study Area

Mahi River is an inter-state (Rajasthan, Gujarat and Madhya Pradesh) perennial river of 
India. It is the longest west flowing river that originates at the northern slope of the Vindhyan 
mountain range, Dhar district of Madhya Pradesh and drains into the Gulf of Khambhat, as 
shown in Fig. 1. The topography of all the states differs from one another. Part of Rajasthan 

Fig. 1  Geographical location of the study area



 S. Maurya et al.

1 3

comprises hills, forests and eroded terrain, while Gujarat has flat, fertile land. Madhya 
Pradesh has undulating land with ridges and plain area. The changing topography through 
which the Mahi River flows has a huge ecological and economic significance. The total 
length of the basin is 583 km, and the drainage area is approx. 34,842 sq km. Approximately 
63.63% of the catchment area around the basin is covered by agricultural land, 19.29% by 
forest, while the rest comprises water bodies. The basin falls under two climatic conditions, 
namely, sub-tropical and tropical wet. The temperature of the basin varies from 3 to 47 0C.

3  Materials and Methods

3.1  NEX‑GDDP‑CMIP5 Datasets

The high-resolution dataset generated from the NEX-GDDP-CMIP5 have been adopted in 
this study. This dataset has facilitated the study of climate variability and its impact on past 
and future climate at regional scales. NEX-GDDP uses a statistically downscaling algo-
rithm called the Bias-Correction Spatial Disaggregation (BCSD) method to overcome the 
limitation of GCMs projections. The BCSD method is categorised into two parts for the 
period 1950–2005 of the CMIP5 historical runs. The first part involved correcting the bias 
of the GCMs by using simple statistical measures of the mean, variances, slope etc., com-
pared with the observed datasets of the Global Meteorological Forcing Datasets (GMFD) 
available from the Terrestrial Hydrology Research Group from Princeton University. The 
second part involved spatial disaggregation, which interpolates the coarse resolution of 
GCM data into finer resolution (0.250 × 0.250) through the observed datasets. The NEX-
GDDP provides the set of three climatic variables, including daily maximum temperature, 
minimum temperature, and precipitation for the Retrospective Run (1950–2005) and the 
Prospective Run (2006–2100) with the two projections as RCP 4.5 and RCP 8.5 from the 
21 CMIP5 GCMs.

The NEX-GDDP-CMIP5 dataset is archived at https:// cds. nccs. nasa. gov/ nex- gddp/. 
This study mainly focuses on the climate projection of 20th-century experiments (RCP 
4.5 scenario is extensively used RCP scenario in climate projections studies (Yaduvanshi 
et  al. 2021), and the radiative forcing doesn’t rise continuously like RCP 8.5). Our time 
period of projected streamflow is till 2030; therefore, we chose RCP 4.5 scenario. Six mod-
els, namely; GFDL-CM3, INMCM-4, MPI-ESM-LR, MRI-CGCM3, CanESM2, GFDL-
ESM2M are selected from the NEX-GDDP-CMIP5, which is based on their performance 
as presented in previous studies in India (Chaturvedi et al. 2012; Mishra et al. 2014; Basha 
et al. 2017).

3.2  SWAT Model

The SWAT model is a physically-based, semi-distributed hydrological model used to assess 
the land management practices in water, sediment, agriculture of a large watershed along 
with various types of soil, land use and management practices for long periods of time 
(Arnold and Allen 1996). Based on the set of soil types, land use and slope, the catchment 
is divided into sub-basins which are further subdivided into the smallest sub-unit, such as; 
hydrological response units (HRUs) (Arnold et al. 1998).

Its working principle follows the water balance equation as;

https://cds.nccs.nasa.gov/nex-gddp/
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where  SWt represents the final soil water content,  SWo represents the initial soil water con-
tent,  Rday represents the amount of precipitation,  Qsurf represents the amount of surface 
runoff,  Ea represents the amount of Evapotranspiration,  Wseep represents the amount of per-
colation and bypass exiting the soil profile bottom,  Qgw represents the amount of return 
flow.

In SWAT, the surface runoff is calculated by Soil Conservation Service Curve Number 
(SCS curve number). Here SCS curve numbers are estimated by the following equation;

where,  Qsurf is the accumulated run-off or rainfall excess (mm),  Rday is the rainfall depth for 
the day (mm) and S is a retention parameter (mm).

Runoff will occur when  Rday > 0.2S. The retention parameter varies accordingly to the 
soil, land use, management practices and slope pattern. The retention parameter is repre-
sented as:

where, CN is the curve number for the day.

3.3  SWAT Model Input Datasets

To run the SWAT model, the main input files are the Digital Elevation Model (DEM), soil 
types, land use and land cover, and hydrometeorological datasets. All the datasets are listed 
in Table 1.

3.3.1  Digital Elevation Model (DEM), Land Use and Soil Types

DEM is the primary component for SWAT model simulation for defining watershed bound-
ary and delineated into sub-watersheds according to their elevation. Additionally, various 
types of parameters e.g., stream network, slope, aspect and channel width, etc. are extracted 
by 30 m DEM in this study Fig. 2a.

The Land use Land cover (LULC) map is accessed from the Global Land Cover Char-
acterization database (GLCC) of the U.S. Geological Survey, which has a spatial resolution 
of 1 km (Bird et al. 2008). The LULC has approx. 83.10% area covered by cropland, 4.06% 
by forest area and 12.84% area covered by water, urban, wetland, and grassland, as shown 
in Fig. 2b.

The soil maps of this study are accessed from the Food and Agriculture Organization 
(FAO) United Nations, global soil data at 1 km resolution. This data provides information 
on the physio-chemical properties of soil, such as water storage limit, organic content, bulk 
density, clay, silt and sand fraction at the depth 0–30 cm (topsoil) and 30–100 cm (subsoil) 
of each soil types. The primary six different types of soil groups are cambisols (12.18%), 

(1)SWt = SWo +

n
∑

i=1

(Rday − Qsurf − Ea −Wseep − Qgw)

(2)Qsurf =
(Rday − 0.2S)2

(Rday + 0.8S)

R > 0.2S

(3)S = 25.4

(

1000

CN
− 10

)
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lithosol (3.85%), vertisols (49.25%), luvisols (13.80%), acrisols (10.66%), and fluvisols 
(6.88%) shown in Fig. 2c.

3.3.2  Hydrometeorological Datasets

The Indian Meteorological Department (IMD) gridded rainfall datasets at 0.250 × 0.250, 
and maximum and minimum temperatures at  10 ×  10 are available over the Indian region. 
The IMD uses the highest number of 6955 rain gauge stations to have a combination of 
hydro-meteorology, agromet observatory stations to estimate the accurate rainfall at a daily 

Fig. 2  a Digital elevation model; b Land use and land cover; c Soil types; d and Stream gauges station of 
the study area
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scale (Pai et  al. 2014). The gridded data was obtained from the rain gauge stations, and 
quality was improved by various information such as; coding and typo error correction, 
extreme values, etc. IMD uses Inverse Distance Weighted (IDW) interpolation technique 
along with the radial distance to convert the gauge stations data into gridded data. In this 
study, data from 1981–2012 rainfall, maximum and minimum temperature are taken from 
the six meteorological stations over the Mahi river basin Fig. 2d.

The relative humidity, wind speed, and solar radiation datasets are acquired from the 
National Centres for Environmental Prediction (NCEP), Climate Forest System Reanalysis 
(CFSR) during the period from 1998–2012. The NCEP-CFSR weather is estimated by cut-
ting-edge data-assimilation techniques by using meteorological gauge station observations 
and satellite irradiances inclusive of atmospheric, oceanic, and surface-modelling compo-
nents available at 0.5 degree resolution (Saha et al. 2010).

3.3.3  Streamflow Datasets

The Central Water Commission Committee of the Ministry of Water Resource Govern-
ment of India installed a number of streamflow gauge stations in the tributaries of river 
basins across India for hydrological studies. The streamflow is measured at the gauge sta-
tion once at time 08:00  h daily by the area-velocity method. The daily streamflow data 
from 1998–2012 was taken from the Central Water Commission (CWC) Gujarat at a daily 
time step for the six stream gauge stations, as shown in Fig. 2d.

3.4  Methodology

The primary goal of this research is to assess the impact of future climate variables on 
the river’s hydrologic system. Figure 3 depicts the methodology framework of this study, 
which includes (i) prepared the spatial datasets and climate variables into SWAT format, 
(ii) model setup, including watershed delineated into sub-watersheds and Hydrologic 
Response Units (HRUs), (iii) calibration and validation of the model, and (iv) Future cli-
mate change impacts on streamflow are being assessed. ArcSWAT version 10.1, an ArcGIS 
extension-based SWAT model has been used in this study. SWAT is a physical based model 
that needed a digital elevation model (DEM), a land use and soil map, and daily weather 
data as primary input datasets. The SWAT-CUP programme is used for calibration and val-
idation. Several hydrological model parameters are adjusted at this stage to accomplish the 
best suitable between the simulated and measured flow at the monitoring station. Finally, 
the climate change impact on the future streamflow is projected using the model.

3.4.1  SWAT Model Simulation

The SWAT model was simulated for approx.15 years. The time frame taken for this study 
is 1998–2012, from which 1998–2000 (warm-up period) are used to initiate the model’s 
state variables and (2001–2008) are utilized for calibration. The validation period is up to 
4 years approx. from 2009 to 2012. After the proper calibration and validation of the SWAT 
model, it is used to simulate the streamflow in the MRB during the baseline (1981–2010) 
and near future (2011–2040) time series to calculate the climate change impact. The future 
hydrological conditions are simulated using the downscaled precipitation and temperature 
dataset of the NEX-GDDP-CMIP5.
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3.5  Calibration and Uncertainty Analysis Techniques

3.5.1  Sequential Uncertainty Fitting Version‑2 (SUFI‑2)

Bayesian framework-based SUFI-2 method estimates uncertainties by using the sequen-
tial and fitting process. SUFI-2 accounts for all types of uncertainties, for example, 
input, structural, parameter and response uncertainty. A combination of optimiza-
tion and global uncertainty analysis is applied through the Latin Hypercube Sampling 
(Abbaspour et al. 2007). However, output uncertainty is measured by the 95% predic-
tion uncertainty band (95PPU) examined by the 2.5% and 97.5% levels of the cumula-
tive distribution function of the output variables (Abbaspour et al. 2004). The process of 
the SUFI-2 is described below;

*NCEP, National Centers for Environmental Prediction; IMD, Indian Meteorological De-

partment; CWC, Central Water Commission;

Fig. 3  Schematization of the Methodology
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1. Firstly, the objective function (θ) and meaningful parameter ranges [θabs min, θabs max] are 
calculated. After that, the Latin Hypercube sampling approach is applied to evaluating 
the objective functions, and the given formula computes the sensitivity matrix J and the 
parameter covariance matrix C

where,S2
g
 is the variance of the objective function values resulting from the m model 

runs.
2. A 95% predictive interval of a parameter �j is computed as follows;

where �∗
j
 is the parameter �j for the best estimates (i.e. parameters which produce the 

optimal objective function), and v is the degree of freedom (m–n).
3. The two indices, such as the p-factor (the percent of observations bracketed by the 

95PPU) and the r-factor are calculated. After which 95PPU is calculated

where yM
ti,97.5%

 and yM
ti,2.5%

 represent the upper and lower boundary of the 95PPU, and 
�obs stands for the standard deviation of the measured data.

The effectiveness of the calibration and uncertainty of the SWAT model performance is 
judged by the p-factor and r-factor. The p-factor represents the percentage of the measured 
data bracketed at the 95PPU, and when the value is close to 1, it is 100% (Abbaspour et al. 
2004). The value of the r-factor is the ratio of average thickness of the 95PPU to the standard 
deviation of the measured data. The lesser value of r-factor indicates less uncertainty, while a 
value close to 1 indicates higher uncertainty.

4  Performance Indices

4.1. The Nash–Sutcliffe coefficient (NSE) and Coefficients of determination  (R2) are used 
as goodness-of-fit indicators for the evaluation of the SWAT model due to its flexibility. The 
value of NSE varies from -∞ to 1, where 1 indicates 100% correct simulation of the model, 
and negative values indicate that the mean observed value is over predicted to the simulated 
values (Nash and Sutcliffe 1970). It describes how well the plot fits 1:1 line between observed 
and simulated data. NSE is calculated as

(4)Jij =
Δgi

Δ�j
, i = 1.........Cm

2
, j = 1.......n

(5)C = S2
g

(

JTJ
)−1

(6)�j,lower = �
∗
j
− tv,0.025

√

cjj,�j,upper = �
∗
j
+ tv,0.025

√

cjj

(7)r − factor =

1

n

∑n

ti=1

�

yM
t,97.5%

− yM
ti,2.5%

�

�obs

(8)NSE = 1 −

n
∑

i=1

�

Qm − Qs

�2

i

n
∑

i=1

�

Qm,i − Qm

�2
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where,  Qm is the mean of observed streamflow, and  Qs is the simulated streamflow and n is 
the total number of observations.

4.2  R2 defines the proportion of the total variance. Its range varies from 0 to 1, where a 
higher value indicates good performance (Kumar et al. 2017).  R2 is calculated as

where, Q for streamflow, m and s for measured and simulated values, respectively.

5  Results and Discussion

5.1  SWAT Model Performance and Evaluation

5.1.1  Sensitivity Analysis

SWAT-CUP (calibration and uncertainty programs) interface has been used for sensitivity, 
calibration and uncertainty analysis of model. In SWAT-CUP, a large number of model 
parameters are given, such as sediment yield, water quality, streamflow, soil nutrient etc., 
which are determined by relevant articles carried out in basins with similar environmen-
tal conditions (Santhi et  al. 2001; Lenhart et  al. 2002). The seventeen parameters which 
are important for the model performance are CN2, ALPHA BF, GWDELAY, GWQMN, 
REVAPMN, ESCO, CH N2, CH K2, ALPHA BNK, SOL AWC, SOL K, SOL BD, OVN, 
SLSUB BSN, SFTMP and HRU SLP. After identifying sensitive parameters in SWAT 
CUP, some parameters are adjusted by default, and some parameters range are further 
adjusted and calibrated in the model for better streamflow results. The t-stat and p-value 
help in the identification of the most sensitive parameters among the seventeen parameters. 
The larger value of t-stat and the smaller value of p indicate the most sensitive parameters, 
which are shown in Table 2.

The most sensitive parameters of the MRB are curve number (CN2), alpha factor for 
bank storage (ALPHA BNK) and groundwater revap coefficient (GW REVAP). These 
parameters were also found sensitive by other researchers as in (Thampi et al. 2010).

5.1.2  Calibration, Uncertainty Analysis and Validation

Calibration and uncertainty analysis are applied to parameterize a model to mini-
mize the predictive uncertainty and the difference between the model simulation and 
observation. 1000 simulations are applied to gain a better estimation of the stream-
flow to calibrate the model for the period 2001–2008 (Fig.  4a). Further, the model 
performance is tested by objective functions NSE,  R2, p-factor and r-factor. The dotty 
plot is the plot of a parameter value corresponding to the objective function (NSE) 
analysed, as shown in Fig.  5. The parameter sensitivity is expressed by the scatter-
ing of sampling points i.e., random and dispersed points suggested that the sensitivity 
is low. And a certain pattern is liked to be sensitivity is higher. The minimum value 
of NSE 0.5 (threshold value for behavioral) is considered in this study (Yaduvanshi 
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et al. 2018). During the calibration process, the prediction uncertainty (95PPU) against 
the observed streamflow using the SUFI-2 technique is expressed in Fig.  4a. 95PPU 
depicts the uncertainty of the model and well captures the peak of the streamflow from 
January 2001 to December 2008. The r-factor (0.89) and p-factor (0.94) are obtained, 
respectively. The high value of NSE (0.91) and  R2 (0.92) indicates that the model per-
formed well.

Fig. 4  a 95PPU plot derived by SUFI-2 method during calibration period from (2001–2008). b 95PPU plot 
derived by SUFI-2 method during validation period from (2009–2012)

Fig. 5  Dotty plots with the objective function of NSE coefficient against each aggregate SWAT parameter. 
x-axis with sensitive parameters and y-axis as NSE
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Further, the validation process is done using observed streamflow data (1000 times run) 
for the period 2009–2012. The value of evaluation statistical measures such as  R2 (0.72), 
NSE (0.70) and p-factor (0.94), r-factor (1.95) are obtained respectively (Fig. 4b). The high 
value of  R2, NSE, p-factor and r-factor in the calibration and validation process fulfil the 
criteria of model performance (Moriasi et al. 2015) and results depict that the calibrated 
model performs well and can simulate the streamflow for future projection. Therefore, the 
calibrated model is used to examine the potential impacts of climate change on the water 
resource developer of the MRB.

5.2  Model Evaluation

The performance of the annual mean of rainfall and temperature dataset of the six mod-
els and their ensemble mean (average of the multiple models) of the NEX-GDDP-CMIP5 
and IMD (observed) during the baseline time period (1981–2010) is depicted using the 
Taylor diagram as shown in Fig. 6a–c. The Taylor diagram of rainfall concludes that the 
individual model and ensemble mean cluster lies between the correlation coefficient of 
0.9 to 0.99. However, the standard deviation value of the MRI-CGCM3, INMCM-4 and 
ensemble mean is close to 0.75 mm/day with a Root Mean Square (RMS) value of approxi-
mately 0.075 mm/day. Compared with the ensemble mean, INMCM-4 and MRI-CGCM3 
have slightly higher RMS (0.18 and 0.13 mm/day). Thus overall analysis suggested that the 
INMCM-4, MRI-CGCM3 and ensemble mean performed better than other models and can 
be used for future climate change projection (Fig. 6a). We had already assessed the pre-
cipitation data of six models of NEX-GDDP-CMIP5 over the MRB for a baseline period 
1981–2010, with detailed description provided in a previous paper (Maurya et al. 2021). 
In continuation to previous work, we have also assessed the maximum and minimum tem-
perature data of six models of NEX-GDDP-CMIP5 with the observed datasets during the 
baseline period.

Figure 6b, c, indicate a successful performance for the maximum and minimum tem-
perature variable by all the individual model and ensemble mean of NEX-GDDP-CMIP5. 
However, all individual models and ensemble mean have the highest correlation of 0.99 
and a low error (RMS) of approximately to 0 and a standard deviation value close to 1. 
Further, the overall analysis suggests that precipitation projections are more uncertain with 
large variability than temperature projection.

5.3  Climate Change Scenario Generation

The scenarios of future climate are calculated by the differences (temperature) and percent-
age change (rainfall) in the near future (2011–2040) relative to the baseline time series 
(1981–2010), as shown in Tables 3 and 4. This analysis aims to observe the performance 
of these downscaled NEX-GDDP-CMIP5 model in order to evaluate the streamflow in the 
near future (2011–2040). Rainfall percentage (Table 3) indicates that rainfall decreases in 
the month of June, July and increases in the month of August and September of INMCM-
4, MRI-CGCM3 and ensemble mean, respectively. This implies that under this scenario, 
rainfall may be slightly shifted in August and September, which would be beneficial for the 
agricultural field. From Table 4, it reveals that the maximum and the minimum temperature 
in the near future (2011–2040) increases in all months of the INMCM-4, MRI-CGCM3 
and ensemble mean.
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Figures 7 and 8a–b depict the box-whisker plot of annual average rainfall, maximum 
and minimum temperature of the INMCM-4, the MRI-CGCM3 and the ensemble mean. 
The box-whisker plots provide information about the spread and skewness observed in 

Fig. 6  Taylor diagram of NEX-GDDP-CMIP5 models versus IMD annual mean of a Rainfall b Maximum 
temperature, and c Minimum temperature during the period 1981–2010

Table 3  Average monthly rainfall 
changes for (2011–2040) with 
respect to (1981–2010), percent 
change (%)

Month Ensemble INMCM-4 MRI-CGCM3

June
July
August
September

–8.45
–8.20
18.17
9.77

–7.97
–7.75
16.10
4.37

–6.21
–6.96
12.30
7.91
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the datasets, specifically, the upper quartile, the median line (centre) and the lower quar-
tile. The whiskers represent a dotted line at each end of the box through the minimum 
and maximum values, and hollow circles show the outliers. Figure 7 shows that rainfall of 
the INMCM-4 and MRI-CGCM3 has higher variability than the ensemble mean, and no 
fixed pattern (continuously increasing or decreasing) has been observed in comparison to 
IMD data. While, the maximum and minimum temperature of INMCM-4, MRI-CGCM3 
and ensemble mean have lesser variability and a continuous increasing pattern has been 
observed as compared to IMD, Fig. 8a and b.

5.4  Streamflow Projection Under Future Climate Scenario

The future climate datasets of INMCM-4, MRI-CGCM3 and ensemble mean have been 
used as input in the SWAT model for streamflow prediction. The mean annual stream-
flow of the baseline time series (1981–2010) is found to be 583.45  m3/sec. In the near 
future (2011–2040), the high value of the projected mean annual streamflow is observed 
as 1031.24  m3/sec from the INMCM-4, and the low value of the mean annual stream-
flow is observed as 778.71  m3/sec from the MRI-CGCM3, and the mean annual stream-
flow is observed as 773.11  m3/sec from the ensemble mean. The streamflow at 95PPU 

Table 4  Average monthly maximum and minimum temperature (0C) changes for (2011–2040) with respect 
to (1981–2010) (2011–2040)

Tmax Tmin

Month Ensemble INMCM-4 MRI-CGCM3 Ensemble INMCM-4 MRI-CGCM3

Jan
Feb
March
April
May
June
July
August
Sep
Oct
Nov
Dec

1.62
1.72
1.50
1.71
2.39
2.33
1.94
2.49
1.83
1.49
1.70
1.42

1.57
1.96
1.54
1.85
1.91
2.68
1.89
2.01
1.73
1.33
1.65
1.37

1.47
1.87
1.61
1.79
2.01
2.58
1.86
2.55
1.69
1.53
1.59
1.49

1.80
1.35
1.26
1.46
1.77
1.93
1.83
2.26
1.99
2.29
2.05
1.74

1.94
1.43
1.13
1.29
1.96
1.75
1.69
1.98
1.75
1.84
2.01
1.69

1.86
1.74
0.98
1.67
2.02
1.85
1.43
2.21
1.43
2.21
2.12
1.58

Fig. 7  Box-Whisker plot of 
annual average rainfall of NEX-
GDDP-CMIP5 v/s IMD datasets
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(95% prediction uncertainty) of INMCM-4, MRI-CGCM3 and ensemble mean model 
in the near future time series 2011–2040 is shown in Fig.  9a–c. The results depict that 
the higher streamflow approx. 10000  m3/sec was observed in the year 2028 (INMCM-4) 
while approx 8000  m3/sec was observed in the year 2027 (MRI-CGCM3), 2035 (ensemble 
mean), and 2033 (INMCM-4). However, it is interesting to notice that the streamflow of 
approx. 3000–4000  m3/sec is observed throughout the year by MRI-CGCM3, INMCM-4, 
and ensemble mean.

Further, the distribution of monthly streamflow over the 30 years (2011–2040) is plot-
ted with the baseline period (1981–2010) streamflow, as shown in Fig. 9d. The projected 
average monthly streamflow is higher than the baseline period from January to December 
by MRI-CGCM3, INMCM-4, and ensemble mean. In the near future, the highest stream-
flow is observed in the rainy season (June, July, August and September) while the lowest is 
observed in the summer season (March, April and May) by the INMCM-4,MRI-CGCM3 
and ensemble mean. During the rainy season, the lowest and highest streamflow changes 
range from about 631.07–2718.42  m3/s by INMCM-4, 491.71–2938  m3/s by MRI-CGCM3 
and 513.02–2270.18  m3/s by ensemble mean, in the near future. Similarly, during summer 
season, the lowest level of stream flow, 158.27  m3/s observed by MRI-CGCM3, 193.38  m3/s  
(ensemble mean) and 258.53  m3/s (INMCM-4), respectively.

6  Monthly and Seasonal Variation

Non-parametric Mann–Kendall (MK) and Sen’s slope trend tests are analyzed, and the 
streamflow data of INMCM-4, MRI-CGCM3 and ensemble mean at monthly, seasonal and 
annual scale during the time period from 2011–2040 are shown in Table 5. In this table, a 

Fig. 8  Box-Whisker plot of the 
annual average of a Maximum 
temperature (0C) b Minimum 
temperature (0C) of NEX-GDDP-
CMIP5 v/s IMD datasets

Fig. 9  Streamflow projections based on the NEX-GDDP-CMIP5 datasets, during the period of 2011–2040 
(a)–(c) and (d) mean monthly streamflow using the NEX-GDDP-CMIP5 v/s IMD datasets
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positive standard normal variate (Z) and probability (P) indicate the ascending trend, while 
a negative Z and P value represents a descending trend. Obtained results show the non-
significant ascending and the decreasing trend observed by the individual and ensemble 
mean at the 95% significant level. At the monthly scale, the descending trend is observed 
in July and October, while other months show the ascending trend under the INMCM-4, 
MRI-CGCM3 model. On the other hand, a descending trend is observed in the month of 
January, March and December and the rest of the months show ascending trend under the 
ensemble mean model. The seasonal scale shows an ascending trend, which is observed 
in the South-west monsoon and Winter monsoon alternately; descending trend is detected 
in Pre-monsoon and Post- monsoon seasons of INMCM-4, MRI-CGCM3 and ensemble 
mean.

7  Conclusions

This study represented an approach that integrated climate data with a SWAT model to 
evaluate the streamflow component to projected climate change in a basin. The climate 
model output from the NEX-GDDP-CMIP5 under the RCP4.5 scenarios was used in 
order to assess the performance over the study region. An analysis of climate projections 
indicated that output from INMCM-4, MRI-CGCM3 and ensemble mean performed the 

Table 5  MK trend test statistics of streamflow during time period 2011–2040 under the Ensemble mean, 
MRI-CGCM3 and INMCM-4 model

Month Ensemble mean INMCM-4 MRI-CGCM3

z p Slope z p Slope z p Slope

Jan –0.24 0.80 –1.07 0.35 0.72 2.12 1.21 0.22 6.48
Feb 0.32 0.67 –0.04 0.38 0.68 1.14 1.35 0.17 5.44
March –0.14 0.88 –0.84 0.42 0.52 1.53 1.35 0.17 5.44
April –0.21 0.83 –0.84 0.39 0.69 1.22 1.39 0.16 3.61
May –0.28 0.77 –0.92 0.21 0.83 0.48 1.10 0.26 2.79
June 1.42 0.15 0.13 0.17 0.42 0.23 0.41 0.25 0.97
July 1.78 0.07 0.41 –0.10 0.34 –0.61 –0.64 0.22 –0.9
Aug 1.21 0.22 0.21 0.82 0.11 0.32 0.17 1.08 1.11
Sep 0.43 0.31 0.03 0.21 0.57 0.45 0.46 0.26 0.14
Oct 0.07 0.94 2.73 –0.67 0.49 –9.47 –0.46 0.46 –4.68
Nov 0.03 0.97 0.40 0.39 0.69 2.73 0.21 0.83 1.75
Dec –0.42 0.66 –1.26 0.35 0.72 2.77 0.42 0.66 2.76
Pre-
monsoon

–0.17 0.85 –0.66 –0.32 0.74 –1.04 –1.28 0.19 –3.27

South-
west
monsoon

1.14 0.25 2.86 0.49 0.61 1.92 1,07 0.28 25.53

Winter
monsoon

0.14 0.88 0.97 0.35 0.72 1.95 1.21 0.22 6.75

Post-
monsoon

–0.54 1.33 –0.93 –0.71 0.47 –5.15 –0.17 0.85 –1.89



Future Climate Change Impact on the Streamflow of Mahi River…

1 3

best among the six selected models over the MRB. The result depicted that precipitation 
peaked in August and September while the frequency of extreme temperature (maximum 
and minimum) increases over all months in the near future of INMCM-4, MRI-CGCM3 
and ensemble  mean. Further, the SWAT model has been calibrated and validated using 
observed datasets. This modelling study reveals that annual average streamflow will be  
increased by 76.74% (1031.24  m3/sec) based on the INMCM-4 outputs, 25% (778.71  m3/sec)  
based on the MRI-CGCM3 outputs, and 24.53% (773.11  m3/sec) based on the ensemble 
mean in the near future.

Further, the percentage change in high and low streamflow with respect to the baseline 
time period and the difference between the high and low streamflow would be increasing in 
the near future. Thus, it can be illustrated that low streamflow is observed during the sum-
mer season, which causes water shortage, drought and high flow during the rainy season, 
leading to floods and other water-related disasters. Similar trends are observed on monthly 
and seasonal flows under the INMCM-4, MRI-CGCM3, and ensemble mean. Thus, results 
from this study provide a better understating of streamflow of river basins. This could be 
useful for the scientific communities, researchers as well as decision makers to develop 
climate change adaptation strategies for planning and managing the water resource in the 
basin.
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