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Abstract

The rising global temperature is one of the primary concerns of the world as it

impacts the economy, environment and healthcare of any country which are

more pronounced a regional level. Assessment of regional impacts of climate

change at a local level requires fine resolution of climate data for which a

robust and fast downscaling method is needed. In this study, we use three deep

learning-based methods, namely long short-term memory network (LSTM),

deep neural network (DNN) and recurrent neural network (RNN), to down-

scale CMIP6 13 GCMS models data (1.25� × 1.25� resolution) global climate

model (GCM) maximum temperature (Tmax) at a regional scale of 0.5� × 0.5�

spatial resolution for the period 1991–2010 over the Indo-Gangetic Plain (IGP).

In addition to the temperature prediction, heat wave events have been also

analysed in the study. The study found that LSTM method performs better

than DNN and RNN in downscaling of all GCM model datasets when evalu-

ated against observed maximum temperature data from the India Meteorologi-

cal Department (IMD) in terms of RMSE (0.9–3.5), average of all grid MAE

value between (1.2 and 2.68), correlation (0.68–0.9) along with and spatiotem-

poral variability. LSTM also performed better in heat wave prediction over the

region with similar temporal range (12–36 events) and spatial occurrence as

compared to the observation (12–28 events). Overall, the study concludes that

LSTM performs better than two methods for Indo-Gangetic Plain with best

hyper parameter tuning. Hence, we propose to utilize a deep learning frame-

work based on LSTM for downscaling GCM dataset at a finer resolution.
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1 | INTRODUCTION

The ability of general circulation models (GCMs) in
reproducing weather parameters such as maximum tem-
perature holds a critical importance in climate change

studies. The purpose of GCMs is to understand the
effects of climate change by simulating physical pro-
cesses up to 200 years in the future. The simulation of
the global climate on a large-scale necessitates a signifi-
cant amount of computational resources. GCMs provide
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plausible simulations of weather variables at global
scales but cannot generate local climate details at a local
scale needed for climate change impact assessment on
different sectors such as health and agriculture.
Although GCMs have been widely used as a reliable
source of climate variables, they remain relatively coarse
or low in resolution and are unable to resolve significant
subgrid-scale features such as topography, clouds, land
use, temperature and offshore wind energy (Niazkar
et al., 2023; Peach et al., 2023; Zhang and Li, 2021).
Therefore, there is a need to convert the GCM outputs
of climate variables at a local scale. Downscaling is an
efficient technique to obtain high-resolution climate
information from coarse resolution GCM data for accu-
rate regional climate projections. Downscaling can be
performed using two approaches: dynamical and statis-
tical approach. Dynamical downscaling is the method to
derive smaller-scale climatic information over a
bounded area using high-resolution regional climate
model, driven by initial and boundary condition from
GCMs. Statistical downscaling establishes a statistical
relationship between large-scale climate features (pre-
dictors) and local climate data (predictands) to derive
local climate information (Zhang and Li, 2021). More
recently, statistical downscaling has found wide applica-
tion in climate studies for scenario construction and
simulation/prediction of daily mean, maximum and
minimum temperature (Wang & Tian, 2022; Wilby
et al., 2002; Zhang and Li, 2021). As precipitation is a
fundamental component in the water cycle, a compre-
hensive outlook is essential for managing water systems
under changing climate (Sachindra & Perera, 2016).
Studies has shown that the downscale high-resolution
data will significantly improve in the simulation of
meteorological and hydrological variables (Ghosh and
Mujumdar, 2008; Qiu et al., 2022; Singh & Mall, 2023).
According to Okkan et al. (2023) downscale GCM out-
puts through the ANN structures will provide sufficient
simulation accuracy for climate uncertainty and climate
impact study. Hence, along with temperature, downscal-
ing has been also performed for precipitation studies
such as for low-frequency rainfall events (Ahmed
et al., 2020; Pandey et al. 2022), potential evaporation
rates (Weisse & Oestreicher, 2001) and extreme precipi-
tation (Cavalcante et al., 2020).

Intergovernmental Panel on Climate Change (IPCC)
in its sixth assessment report has stated that anthropo-
genic activities induced climate change has increased the
frequency of extreme weather events such as heat waves,
flood, drought etc., which has caused huge loss to natural
and man-made ecosystem (IPCC, 2021). In previous stud-
ies, several researchers have reported increasing tempera-
ture with more extreme occurrences at different time

scales over various parts of India (Mall et al., 2021; Singh
et al., 2023). Studies have also reported that increase in
temperature will lead to reductions wheat yield
(Ishtiaque et al., 2022; Yadav et al., 2015). Extreme tem-
perature have a detrimental impact on health leading to
increase in morbidity and mortality of the population
(Singh et al., 2019, 2021a, 2021b). Similarly, extreme tem-
perature has been found to impact the water demands as
well as evapotranspiration in the region (Kuttippurath
et al., 2021). The regional impacts of such events are
much more pronounced causing huge loss of life and
property (Mall et al., 2019). In such scenario of extreme
temperature causing severe impact on health, water and
agriculture sector, high-resolution climate information is
vital for present as well as future projection based impact
assessments.

The implementation of dynamical downscaling is lim-
ited by high computational processes, a demand for enor-
mous volumes of data, and a requirement for high levels
of skill to apply and comprehend results (Trzaska &
Schnarr, 2014). Following these constraints which pre-
vents its widespread application, statistical downscaling
approach has been widely used in climate change studies,
as it is computationally inexpensive and convenient in
implementation and interpretation of the results
(Wang & Tian, 2022). Statistical downscaling has been
extensively employed in studies of climate change due to
the ease of implementation and interpretation of the
results (Zhang and Li, 2021). The primary goal of statisti-
cal downscaling is to establish a link between predictors
and predictands which has become advanced using artifi-
cial intelligence (AI) and machine learning
(ML) methods which include (i) nonlinear regression
models of artificial intelligence, for example, artificial
neural network (ANN; Chadwick et al., 2011), support
vector machine (SVM; Tripathi et al., 2006), least squares
support vector machine (LSSVM) and relevance vector
machines (RVM; Okkan & Inan, 2015a, 2015b); (ii) linear
regression models, for example, statistical downscaling
model (SDSM; Wilby et al., 2002); (iii) weather genera-
tors, for example, long ashton research station-weather
generator (LARS-WG; Racsko et al., 1991). The ability of
ANNs to simulate the nonlinear and time-varying proper-
ties of atmospheric variables at various scales, as well as
their propensity to uncover complex patterns and link-
ages between predictors and predictands, have led to suc-
cessful applications of ANN for downscaling purpose
(Chadwick et al., 2011). Deep learning-based methods
have been used for GCM bias correction and downscaling
in recent years. The developed an image high-resolution
architecture called YNet to downscale precipitation and
monthly mean temperature, from multiple GCMs model
data (Liu et al., 2020), proving that the model performed
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better than a shallow plain architecture (Vandal et al.,
2019) and a traditional statistical downscaling method.

All the above methods basically consider climate data
to be linear and stationary. As an alternative to these
methods that can address the nonlinearity in time series
data, a number of ML models have been presented for cli-
mate data downscaling and multi-model ensemble fore-
casts (Ahmed et al., 2020; Kolluru et al., 2020). Deep
neural networks (DNNs) are typically feed forward net-
works (FFNNs), in which data travels from the input
layer to the output layer without travelling backward and
the links between the layers are one way, that is, in the
forward direction, never touching a node again.
The recurrent neural networks (RNNs), a typical class of
deep learning method which is a subset of ML with a spe-
cific internal state (memory cell), can exhibit temporally
dynamic behaviour for a time sequence, and such net-
works have been widely used to solve time series prob-
lems involving speech recognition, time series prediction,
weather events and power loads (Wang et al., 2018). Long
short-term memory's (LSTMs) is an artificial neural net-
work used in the fields of artificial intelligence and deep
learning. Long short-term memory network is an
advanced RNN, a sequential network that allows infor-
mation to persist (Hochreiter & Schmidhuber, 1997). It is
capable of handling the vanishing gradient problem faced
by RNN (Tran Anh et al., 2019). These deep learning
(DL) techniques feature key overcome for the training
mechanisms of deep networks, and they can get over the
hidden layer number and neuron number restrictions in
conventional ANNs. Thus, DL methods are advantageous
and used for studying the feature extraction, data mining,
weather events and nonlinear function approximation,
downscaling (Feng et al., 2021). DL is regarded as a high-
efficiency methodology for processing and analysing the
climate “big data” of the CMIP projects; especially, DL
methods can assist researchers in discovering underlying
physical principles in Earth's climate systems and in
identifying detailed relationships (Zhang and Li, 2021).

The projection of climatic extremes from GCMs data-
sets show high uncertainty due to different factors like
emission scenarios, regional climate variability, model
parametrization schemes and internal model physics
(Chaubey & Mall, 2023). To mitigate this uncertainty,
previous researchers applied different corrections and
deep learning methods, which have been found to be effi-
cient at statistical downscaling (Sabarinath et al., 2023;
Wang & Tian, 2022). A notable research gap in statistical
downscaling lies in the effective integration of advanced
machine learning techniques, such as deep learning and
ensemble methods, to enhance the accuracy and robust-
ness of downscaling models. Therefore, to address chal-
lenges associated with statistical downscaling, and

improve the applicability of downscaling models to anal-
ysis the regional climatic events like heat wave at higher
resolution, this study aims to use different deep learning
techniques. The three novel deep learning techniques,
namely long short-term memory (LSTM), deep neural
network (DNN) and recurrent neural network (RNN),
are used to downscale the 13 climate models
(CMIP6-GCM) data and select the best suitable method
to downscale the daily maximum temperature. Addition-
ally, this study evaluates extreme temperature and heat
wave events over the Indo-Gangetic Plain (IGP) of India
at high resolution to facilitate an effective climate adapta-
tion planning over the region.

2 | DATA AND METHODOLOGY

2.1 | Study area

The study was conducted for Indo-Gangetic Plain
(IGP) region of India. IGP covers an area of about
700 thousand km2 (172-million-acre) and lies between
21�350–32�280N latitude and 73�500–89�490E longitude.
It is one of the primary region for producing wheat in
the country (Banjara et al., 2022), which is shown in
Figure 1. The Indus and Ganges rivers, which flow
through this area and encircle the northern parts of
the Indian subcontinent, so this region is called the
IGP Plain. Figure 1 shows these agro-climatic zones
that have been developed based on climate, soil and
cropping patterns (Alagh, 1990). IGP plain is divided
into four agro-climatic zones, namely Trans Gangetic
Plain (TGP), Upper Gangetic Plain (UGP), Middle
Gangetic Plain (MGP) and Lower Gangetic Plain
(LGP) (Mall et al., 2021).

2.2 | Data

The observed dataset for daily maximum temperature for
Jan–Dec (1991–2010) has been obtained from India Mete-
orological Department (IMD) for the study region. Cli-
mate models are crucial for understanding and analysing
the physical variables such as temperature, rainfall, and
humidity to name a few. In this regard, Coupled Model
Intercomparison Project (CMIP) provides a benchmark
dataset for understanding the earth and climate phe-
nomenon (Eyring et al., 2016). In this work, we have
used CMIP6 GCM 13 models data (Table 1). The CMIP6
GCM models temperature data were obtained from
Coupled Model Intercomparison Project Phase
6 (CMIP6) (https://esgf-node.llnl.gov/search/cmip6/)
(Chaubey & Mall, 2023).
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FIGURE 1 Study area of Indo-Gangetic Plain (IGP). [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 1 List of CMIP6 models used in this study along with resolution and country of the modelling group.

S. No. Models Institution/country Resolution

1 ACCESS-CM2 Commonwealth scientific and industrial research
organization/Australia

1.25� × 1.25�

2 ACCESS-ESM1-5 Commonwealth scientific and industrial research
organization/Australia

1.25� × 1.25�

3 AWI-CM-1-1-MR Alfred Wegener Institute/Germany 1.25� × 1.25�

4 AWI-ESM-1-1-LR Alfred Wegener Institute/Germany 1.25� × 1.25�

5 BCC-CSM2-MR Beijing Climate Center (BCC) China
Meteorological Administration/China

1.25� × 1.25�

6 BCC-ESM1 Beijing Climate Center Earth System
Model/China

1.25� × 1.25�

7 CMCC-ESM2 Euro-Mediterranean Center on Climate Change
coupled climate model/Italy

1.25� × 1.25�

8 MPI-ESM1-2-HR Max Plank Institute for Meteorology/Germany 1.25� × 1.25�

9 MPI-ESM1-2-LR Max Plank Institute for Meteorology/Germany 1.25� × 1.25�

10 MRI-ESM2-0 Meteorological Research Institute (MRI)/Japan 1.25� × 1.25�

11 NorESM2-LM Norwegian Climate Center/Norway 1.25� × 1.25�

12 NorESM2-MM Norwegian Climate Center/Norway 1.25� × 1.25�

13 TaiESM1 Taiwan Earth System Model/Taiwan 1.25� × 1.25�
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The GCM data for daily maximum temperature has
been obtained at a resolution of 1.25� × 1.25�. The study
extends over the period of 20 years from 1991 to 2010 and is
divided into three time frames for training (1991–2002),
testing (2003–2006) and validating (2007–2010) the down-
scaled temperature data. The goal is to learn from the train-
ing data for the period (1991–2002), predict Tmax for the
calibration (2003–2006), and validate (2007–2010) results.

2.3 | Methodology

The workflow of the proposed methodology for downscal-
ing the Tmax dataset has been shown in Figure 2. In the
present study CMIP6 Models Tmax data at 1.25� resolution
has been used for downscaling. First, the data is prepro-
cessed using a Min Max Scalar that brings the data in the
range of 0–1 (Smolinska et al., 2014). This normalization
process helps in reducing the bias before any model fitting
if the original dataset contains few outliers or values that
have large deviations from the mean (Kang et al., 2023). We
evaluate three AI-based techniques, namely LSTM, RNN
and DNN, for downscaling CMIP6 GCM 13 models data
with a spatial resolution of 1.25� to a 0.5� resolution and
validated with the observed data. The dataset for the period
of 1991–2010 was split into three sub data sets, with 60% of
the data used for training (1991–2002), 20% used for calibra-
tion (2003–2006) and 20% used for validation (2007–2010)
of daily Tmax dataset. The performance evaluation of the
deep learning methods on a daily scale is done using stan-
dard performance metrics which are RMSE and MAE. The

RMSE and MAE values were estimated at each grid point
for both the downscaled daily Tmax, and the corresponding
results are shown in Figures 8 and 9. Further, probability
distribution function, cumulative density function (CDF)
and Taylor diagrams are used to evaluate the performance
of deep learning approach. The fidelity of the deep learning
model output data is tested for the IGP by plotting the prob-
ability density function (PDF). The probability distribution
is a statistical function that captures all possible values and
likelihoods that a random variable can take within a given
range. This range will be bounded between the maximum
and minimum possible values. The probability distribution
function (PDF) has been used to compare the probability
between downscale models output and observations
(Kumar et al., 2021).

The cumulative distribution function (CDF) deter-
mines the cumulative probability of a random variable, it
is used to compare the cumulative probability between
downscale models output and observed. These assess-
ments help in selecting the best model for downscaling
purpose (Singh et al., 2021a, 2021b). Taylor diagram
encompasses three statistics of how well the patterns
between the simulations and references are matched
(Taylor, 2001). These statistics include the Pearson corre-
lation coefficient (PCC) of the spatial patterns, which is
reflected by the azimuth positions; the ratio of standard
deviations (SD), which is reflected by the radial distance
from the origin; and the centralized root-mean-square
error (RMSE), which is reflected by the distance between
the simulation results and a reference. Taylor diagram
gives a concise statistical summary of correlation,

FIGURE 2 Proposed methodology

for downscaling using Deep learning

based method. [Colour figure can be

viewed at wileyonlinelibrary.com]
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root-mean square (RMS) difference and the standard
deviation between observed and downscale model data.
Further, few standard deep learning methods have been
deployed/fitted and its performance on the validation set
is assessed. The best deep learning model that provides
least error as compared to the observed dataset has been
selected. Apart from temperature validation the study
analyses the performance of the output from deep learn-
ing methods in representing the extreme temperature for
the region. For this, heat wave events have been analysed
using the criteria based on exceedance of percentile
threshold of daily maximum temperature over the IGP
region (Perkins & Alexander, 2013). In the subsequent
section, we explain the different deep learning methods
utilized in this work for downscaling.

2.3.1 | Deep neural networks

A DNN is inherently an artificial neural network consist-
ing of many hidden layers between the input layer and
final output layer. DNNs have shown very good results in
the field of image and video processing (LeCun
et al., 2015). Further, they are not much sensitive to out-
liers and can be effectively applied for both univariate and
multivariate datasets. The advantage with DNN over stan-
dard machine learning methods such as support vector
machines (SVM), decision trees (DT) or k-nearest neigh-
bour (k-NN) is the ability to model complex nonlinear
functions and learn the hidden patterns automatically in
the data. Hence, we utilize representation learning
approaches (LeCun et al., 2015; Salahuddin et al., 2022)
and a three layered network with one hidden layer having
8 neurons in this study. The input layer fires 32 neurons
with single neuron at the output. The goal for any DNN is
to minimize the cost function L(Θ) as discussed below,

minΘ
1
n

Xn

i=1
ℓ f xi;Θð Þ,yið Þ≔ L Θð Þ: ð1Þ

Here, xi denotes the input data and yi is the target
data as we are performing supervised learning. Θ denotes
the learning parameters or the weights that are chosen to
minimize the loss function such as mean absolute error
or root mean square error in our case. The goal of all the
deep learning methods used in this work is to minimize
the above mentioned loss function.

2.3.2 | Recurrent neural networks

RNNs are a class of deep neural network with a short-
term internal memory (LeCun et al., 2015). In contrast to

DNNs, the RNNs are extensively used in time-series pre-
diction as it considers both the current input and
the learnings from the past input. DNNs only consider
the current input and the information propagates only in
the forward direction through the feed-forward network
(Han et al., 2019). As shown in Figure 3, it is observed
that due to the feedback in the RNN structure, the
information is propagated in both the directions and the
information of immediate past is added to the present
thereby making it more suitable for time-series predic-
tions. The RNN equations are given below: the least esti-
mation error. However, RNNs in general encounter
challenges such as vanishing gradient, and difficulties in
learning long sequences due to its short memory (LeCun
et al., 2015). LSTMs overcome these issues and will be
discussed in the next subsection,

d<t>=g1 Wdda
<t−1>+Wdxx

<t>+bd
� �

, ð2Þ

y<t>=g2 Wydd+by
� �

, ð3Þ

where Wdx, Wdd, Wyd, bd, by are coefficients that are
shared temporally and g1, g2 denote the activation
functions.

These settings are chosen based on the experiments
performed on calibration set data providing the least esti-
mation error. However, RNNs in general encounter chal-
lenges such as vanishing gradient, and difficulties in
learning long sequences due to its short memory (LeCun
et al., 2015). LSTMs overcome these issues and will be
discussed in the next subsection.

2.3.3 | Long short-term memory networks

LSTM are basically the extension networks of RNNs that
increase the memorizing ability of RNNs using the regu-
lators known as gates. LSTM gates decide which informa-
tion to store and learn, and what to discard using
“forget” gates. There are three gates that control the
information flow, namely an input gate, an output gate
and a forget gate (Yu et al., 2019). These gates compute
letting in new input (input gate), remove or forget the
unimportant information, or output the current time step
(output gate). The forget's gate activation function which
occurs in the gradient term, and the additive structure
leads to solving the vanishing gradient challenge
(Hochreiter & Schmidhuber, 1997). Figure 4 shows the
architecture used for downscaling the time-series data of
temperature values. The LSTM update for t time-step
considering the input xt, h(t−1), and c(t−1) is given below
equations,
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it=σ Wxixt+Whiht−1+bið Þ
f t=σ Wxf xt+Whf ht−1+bf

� �

ot=σ Wxoxt+Whoht−1+boð Þ
gt=ϕ Wxcxt+Whcht−1+bcð Þ

, ð4Þ

ct= f t
K

ct+ it
K

gt, ð5Þ

ht=ot
K

ctð Þ: ð6Þ

In this context, i, f, o, c and g correspond to the input
gate, forget gate, output gate and cell activation,
input modulation gate vectors. These vectors share the
same dimensions as the h vector, which defines the hid-
den value. The symbols σ denote the the sigmoid (logis-
tic) function, and xt represents the memory cell layer
during a specific time step; Wxi, Wxf, Wxo and Wxc are
weight matrices; bi, bf, bo and bc signify the from-to

relationships (the input–input gate matrix, the hidden-
input gate matrix, etc.) are bias vectors. The symbol φ sig-
nifies the element-wise application of the hyperbolic tan-
gent (tanh) function, and

J
denotes elementwise

multiplication.
The details of this architecture are mentioned in

Khan et al. (2020). We tune this architecture by setting
the look back to 17,730 and observe that LSTM provides
better results in prediction task as compared to DNN and
RNNs as it addresses the vanishing gradient problem as
well as the gated architecture.

2.3.4 | Model development and selection

In this work, a LSTM based model is developed for down-
scaling the temperature variable from 1.25� × 1.25� resolu-
tion to 0.5� × 0.5� spatial resolution for the period 1991–
2010 over the Indo-Gangetic Plain (IGP). We obtain the best
estimation results by varying the hyperparameters such as

FIGURE 3 The flow diagram

of RNN. [Colour figure can be viewed at

wileyonlinelibrary.com]

FIGURE 4 The flow diagram

of LSTM. [Colour figure can be viewed

at wileyonlinelibrary.com]
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batch size, number of layers, optimizer and the activation
function to name a few. It is to be noted that we performed
50 trials as suggested in (Kaveh et al., 2021) with different
hyperparameters. We report that the input data dimensions
for calibration stage is 181*5845, and validation stage is
181*7305. The data is first normalized using a min-max
scaler as it does not change the data distribution and helps
the optimizer in minimizing or maximizing the cost func-
tion. We utilize ADAM (adaptive moment estimation) opti-
mizer as it is robust to noisy gradients and can handle large
datasets (as in our case) with adaptive learning rates. Fur-
thermore, we utilize RELU (rectified linear unit) as an acti-
vation function because it introduces nonlinearity to learn
the complex pattern in the temperature data. Also, RELU
helps in avoiding vanishing gradient issue that helps the
deep learning models for accurate estimation. Selection of
appropriate batch size is important for a LSTMmodel as cor-
rect size leads to accurate convergence and stability. In this
work, after multiple trials we select a batch size of 30 for
LSTM in contrary to the best batch size of 16 for DNN and
RNN. In this work, we utilize the RNN model with two hid-
den layers and a look back period of 30 days. This means
that we are attempting to learn from previous 30 days' tem-
peratures to predict the next day's temperature. It can be
observed from the results section that above mentioned
hyperparameters provide best results for LSTM model.

2.3.5 | Heat wave analysis

In the study, heat wave events have been identified using the
criteria based on exceedance of percentile threshold of daily
maximum temperature over the study region. Heat wave
events have been calculated for the heat wave season when
heat waves are observed over most of the country during
March–June (2007–2010) (Singh et al., 2021a, 2021b, 2023).
For calculation of heat wave events, firstly 90th percentile of
the daily maximum temperature observed over each grid of
IGP over the study duration has been calculated. After the
90th percentile is estimated, a heat wave event has been
declared when the daily maximum temperature exceeds the
threshold temperature, that is, the 90th percentile tempera-
ture for three consecutive days over each grid during 2007–
2010 (Mar–Jun) for study region (Perkins & Alexander,
2013). The total number of heat wave events obtained over
each grid from the 13 model outputs has been evaluated
against the observed heat wave events in the present study.

3 | RESULT AND DISCUSSION

In this study, we evaluate three AI-based techniques,
namely LSTM, RNN and DNN, for downscaling CMIP6

GCMs 13 model data with a spatial resolution of 1.25� to
a 0.5� resolution and validated with the observed data.
The dataset for the period of 1991–2010 was split into
three sub data sets, with 60% of the data used for training
(1991–2002), 20% used for calibration (2003–2006) and
20% used for validation (2007–2010) of daily Tmax data-
set. The performance evaluation of the deep learning
methods on a daily scale is done using standard perfor-
mance metrics which are RMSE, MAE. The RMSE and
MAE values were estimated at each grid point for both
the downscaled daily Tmax. Further, Taylor diagrams,
PDFs, CDFs, line plots and spatial distribution are used
to evaluate the performance of machine learning
approach.

3.1 | Cumulative performance
evaluation

The study evaluates the model (LSTM, RNN and DNN)
performance using PDFs, CDFs and Taylor diagrams
using the daily mean maximum temperature (output
obtained after downscaling of 13 GCMs model) over
study area. Figures 5 and 6 show the PDF and CDF of the
daily maximum temperature from all downscale model
outputs, GCMs 13 models output and observed maximum
temperature during validation period, respectively. The
distributions (PDF and CDF) aids in the better under-
standing of the performance of each downscaling
method.

Figure 5 shows probability distribution (PDF) of the
DL methods outputs against observed for the daily maxi-
mum temperature over the Indo-Gangetic Plain. Figure 5
shows an estimation of the mean of daily maximum tem-
perature (downscale model outputs) with respect to the
observed. The daily mean maximum temperature down-
scaled by LSTM lies within the range LSTM (17–42.5),
DNN (17.2–43.5) and RNN (17.3–43.7), against the
observed (17–42.28) during the validation period for all
13 GCMs CMIP6 model. From Figure 5 it is very appar-
ent that the RNN and DNN models overestimate the
observed range. For IGP plain, after downscaling through
LSTM methods, data seem to be closer to observed in val-
idation period. In this comparison, the deep learning
downscaling model LSTM was found to be better among
the three methods as it shows the closer too observed.

Figure 6 shows the cumulative distribution function
(CDF) of the mean of daily maximum temperature for
Indo-Gangetic Plain. However, all three deep learning
methods performed effectively but differently to adjust
the shape of distribution. The cumulative distribution
function curves show a clear difference between down-
scale outputs and GCM 13 models outputs. For IGP plain,
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FIGURE 5 Probability distribution

function (PDF) showing performance of

deep learning methods (LSTM, DNN

and RNN) for the validation period

(2007–2010) (x-axis shows the
temperature in �C). [Colour figure can
be viewed at wileyonlinelibrary.com]

FIGURE 6 Cumulative density

function (CDF) showing performance of

deep learning methods (LSTM, DNN

and RNN) for the validation period

(2007–2010) (x-axis shows the
temperature in �C). [Colour figure can
be viewed at wileyonlinelibrary.com]
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FIGURE 7 Taylor diagram showing

performance of deep learning methods

(LSTM, DNN and RNN) for validation

period (2007–2010). [Colour figure can
be viewed at wileyonlinelibrary.com]

TABLE 2 Taylor diagram result.

Model

RMSE SD Correlation

LSTM DNN RNN LSTM DNN RNN LSTM DNN RNN

OBSERVED 0 0 0 5.49 5.58 5.68 1 1 1

ACCESS-CM2 4.50 4.74 4.90 7.16 7.40 7.56 0.79 0.67 0.66

ACCESS-ESM1-5 4.56 4.66 4.86 6.70 6.90 6.95 0.74 0.63 0.62

AWI-CM-1-1-MR 3.25 4.00 4.17 5.57 5.63 5.70 0.83 0.70 0.68

AWI-ESM-1-1-LR 4.43 4.83 5.02 6.63 6.78 6.87 0.72 0.58 0.57

BCC-CSM2-MR 4.73 4.90 5.23 7.28 7.48 7.55 0.77 0.62 0.60

BCC-ESM1 6.04 6.34 6.54 8.34 8.52 8.63 0.69 0.55 0.55

CMCC-ESM2 4.39 4.50 4.67 6.78 6.85 6.95 0.78 0.66 0.64

MPI-ESM1-2-HR 4.10 4.31 4.50 7.24 7.44 7.56 0.83 0.71 0.70

MPI-ESM1-2-LR 4.70 4.89 4.95 7.32 7.55 7.65 0.75 0.64 0.61

MRI-ESM2-0 5.97 6.10 6.32 8.96 9.10 9.20 0.76 0.61 0.59

NorESM2-LM 5.33 5.50 5.75 7.19 7.42 7.50 0.68 0.53 0.53

NorESM2-MM 2.52 3.98 4.08 5.00 5.15 5.20 0.89 0.73 0.72

TaiESM1 4.25 4.38 4.57 7.33 7.54 7.65 0.81 0.69 0.68

Note: RMSE, standard value (SD) and correlation values of observed and all GCMs model downscaled daily maximum temperature based on the LSTM, DNN
and RNN methods of Indo-Gangetic Plain (India) for the validation period (2007–2010).
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after downscaling through LSTM methods, data seem to
be closer to the observed CDF curve. The RNN and DNN
curves seem to slightly underestimate for all models
against the observed CDF curves in validation period.

Figure 7 and Table 2 show the Taylor diagram and its
summary of the observed and downscaled daily maxi-
mum temperature from three DL methods for the valida-
tion period (2007–2010). Taylor diagrams in Figure 7
show the performance of all the 13 GCMs (CMIP6) data-
set downscaled by LSTM, DNN and RNN for the valida-
tion period across IGP plain. The variations were found
for different deep learning approach, with PCC in the
ranges of LSTM (0.68–8.96) �C, DNN (0.53–0.73) �C and
RNN (0.53–0.72) �C, SD in the range of LSTM (5.0–
8.96) �C, DNN (5.15–9.10) �C and RNN (5.20–9.20) �C
and RMSE in the range of LSTM (2.52–6.04) �C, DNN
(3.98–6.34) �C and RNN (4.08–6.54) �C against the
observed during the validation period for all 13 GCMs
CMIP6 model (Table 2). LSTM displayed the best perfor-
mance, with PCC, SD and RMSE for all GCMs models.
RNN yielded the largest RMSE and had the smallest PCC

whereas DNN shows relatively better results than RNN
with a RMSE, PCC and SD. Summarizing the above the
results, it can be stated that LSTM Tmax shows a higher
agreement with the observation as compared to other
two methods for all 13 GCMs models.

3.2 | Spatial heterogeneity of spatial
performance

The performance of DL methods in downscaling of
GCMs 13 model maximum temperature is shown
through the spatial distribution of RMSEs for calibration
(2003–2006) and validation (2007–2010) period (Figures 8
and 9) against the observed daily Tmax at each grid level
in IGP. The RMSE values of all GCMs model for LSTM
ranges between 0.9 and 3.0�C for both calibration and
validation period. Only Model AWI-CM-1-1-MR and
MPI-ESM1-2-LR for calibration (Figure 8) and ACCESS-
ESM1-5, AWI-CM-1-1-MR and AWI-ESM-1-1-LR models
for validation (Figure 9) period ranges between the 0.9

FIGURE 8 Distribution map of RMSEs (root-mean-square error) for the downscaled daily maximum temperature based on the LSTM,

DNN and RNN methods of Indo-Gangetic Plain (India) for the calibration set (2003–2006). The model is trained from observed data (period

1991–2002). [Colour figure can be viewed at wileyonlinelibrary.com]
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and 3.5�C. In this process, climate models AWI-CM-
1-1-MR and MPI-ESM1-2-LR exhibit considerable uncer-
tainty in DNN and RNN processes; however, LSTM
shows less uncertainty in these models. Furthermore,
earlier studies have suggested that uncertainty is reduced
after applying ANN and statistical downscaling in climate
models (Qiu et al., 2022; Okkan et al., 2023).

For the calibration and validation period, the RMSE
for LSTM has been observed to be as low as 0.9 in some
parts of the upper, lower and some part of middle Gan-
getic plain for all the models except MPIESM1-2-LR in
calibration period. For DNN the RMSE values, ranging
from 0.9 to 4.5�C while for RNN 0.9 to 4.5�C for the both
calibration and validation period, respectively. These
value show the LSTM RSME value is less than DNN and
RNN across the IGP plain. The MAE average values of all
grids for IGP plain for all models ranging between 1.0
and 2.6�C and 1.2 and 2.68 for calibration and validation
period, respectively, in the case of LSTM (Table 3). While
for DNN 1.22–2.91�C and 1.26–2.78�C and for RNN 1.2–
2.79�C and 1.29–2.72�C, MAE ranges for calibration and

validation period, respectively, DNN and RNN MAE
value is comparatively higher than the LSTM models
(Table 3). Similarly, the RMSE average values of all grids
for IGP plain for all model ranging between 0.5 to 1.87�C
and 0.55 to 1.49 for and validation period, respectively,
DNN and RNN RMSE and MAE value is comparatively
higher than the calibration and validation period, respec-
tively, in case of LSTM (Table 3). While for DNN 0.58–
2.07�C and 0.67–1.77�C and for RNN 0.60–1.89�C and
0.66–1.69�C, RMSE ranges for calibration the LSTM
models.

Based on above statistics it can be stated that LSTM
can predict daily temperature with relatively higher accu-
racy than DNN and RNN for all GCMs model.

3.3 | Spatiotemporal variability of
downscaled daily maximum temperature

The observed temporal temperature variability lies
between the ranges of 21–38�C (Figure 10). LSTM

FIGURE 9 Distribution map of RMSEs (root-mean-square error) for the downscaled daily maximum temperature based on the LSTM,

DNN and RNN methods of Indo-Gangetic Plain (India) for the validation set (2007–2010). The model is trained from observed data (period

1991–2002). [Colour figure can be viewed at wileyonlinelibrary.com]
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reproduces the temporal variability relatively closer to
the observation in the range of 19–39.8�C for all GCMs
model outputs in the validation period (Figure 10)

compared to two other deep learning methods. DNN and
RNN temporal temperature variability give the mixed
(overestimate and underestimate) results behave for

TABLE 3 RMSE and MAE mean values of all GCMs model downscaled daily maximum temperature based on the LSTM, DNN and

RNN methods of Indo-Gangetic Plain (India) for the calibration (2003–2006) and validation period (2007–2010).

Model

RMSE_2003–2006 RMSE_2007–2010 MAE_2003–2006 MAE_2007–2010

LSTM DNN RNN LSTM DNN RNN LSTM DNN RNN LSTM DNN RNN

ACCESS-CM2 1.06 1.1 1.11 1.41 1.43 1.44 1.47 1.95 1.92 1.47 1.5 1.49

ACCESS-ESM1-5 0.93 0.98 0.95 1.15 1.22 1.27 1.47 2.02 1.94 1.87 1.89 1.92

AWI-CM-1-1-MR 1.64 1.89 1.88 1.49 1.77 1.69 1.78 1.96 1.95 1.8 1.87 1.84

AWI-ESM-1-1-LR 0.77 0.95 0.93 1.12 1.2 1.22 2 2.03 2.02 1.82 1.85 1.87

BCC-CSM2-MR 0.55 0.69 0.6 0.75 0.76 0.73 2.1 2.3 2.15 1.66 1.67 1.68

BCC-ESM1 1.04 1.14 1.08 0.62 0.81 0.82 2.5 2.68 2.67 2.68 2.78 2.72

CMCC-ESM2 0.52 0.58 0.74 0.6 0.65 0.69 1.1 1. 23 1.3 1.3 1.5 1.4

MPI-ESM1-2-HR 0.63 0.74 0.82 0.97 2.81 1.1 1.5 1.52 1.53 1.3 2.66 1.4

MPI-ESM1-2-LR 1.87 2.07 1.89 0.58 0.67 0.66 2.6 2.91 2.79 1.78 1.81 1.79

MRI-ESM2-0 1.08 1.11 1.28 0.74 2.85 0.66 1.21 1.24 1.3 1.23 2.42 1.78

NorESM2-LM 0.82 1.26 1.02 0.94 1.17 1.22 1.82 1.87 1.93 1.9 1.95 1.97

NorESM2-MM 0.5 0.86 0.88 0.55 0.95 0.91 1 1.22 1.2 1.2 1.26 1.29

TaiESM1 0.9 0.92 0.93 1.04 1.05 1.06 1.11 1.3 1.16 1.23 1.3 1.27

FIGURE 10 Time series diagram of the monthly downscaled maximum temperature using deep learning based models (LSTM, DNN

and RNN), observed and all 13 GCMs model data outputs for the validation (2007–2010) period (x-axis shows the time in months). [Colour

figure can be viewed at wileyonlinelibrary.com]
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different GCMS model during the validation (2007–2010)
period (Figure 10).

The ability of the DL methods to reproduce the spa-
tiotemporal variability of daily maximum temperature is
assessed over the IGP for all 13 GCMs model output.
(Figures 11 and 12). The spatiotemporal variability of
observed maximum temperature lies between the ranges
(26–34�C) during the both calibration and validation
period. LSTM show the spatiotemporal variability rela-
tively closer to the observation in the range of 18–38�C
for both calibration and validation period (Figures 11 and
12). LSTM outputs of all model output variation of (18–
38�C) show closer to the observed variation across the

IGP plain except model ACCESS-CM2 and BCC-
CSM2-MR in the calibration period. Same in validation
period LSTM all model outputs spatial variation shows
closer to the observed spatial variation except model
CMCC-ESM2 and TaiESM1. Both DNN and RNN down-
scale data spatial variability behave different for different
model like some model overestimate (reaching up to
34�C) and some model underestimate (reaching below
to 30�C) for most of the part of the IGP plain during both
calibration and validation period. The mean of the tem-
perature predicted by LSTM method range between for
all model (28.36–32.57�C) is close to the observed mean
(31.2�C) value compare to other two deep learning

FIGURE 11 Distribution map of spatial variation for the observed, model and downscaled maximum temperature based on the LSTM,

DNN and RNN methods of Indo-Gangetic Plain (India) for the calibration set (2003–2006). [Colour figure can be viewed at

wileyonlinelibrary.com]
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methods (Table 4). The spatial distribution of downscaled
maximum temperature of GCMs models shows LSTM to
be best in reproducing the spatial variability of observed
temperature over IGP for both calibration and validation
period (Figures 11 and 12). Models simulated maximum
temperature overestimated the temperature reaching up
to 34�C over most of the IGP during the calibration
period which improved relatively further in validation
period.

Overall, the spatiotemporal variability analysis sug-
gested that the all three DL methods output perform bet-
ter than the GCMs model and out of which LSTM
performs the best while RNN and DNN methods

underestimate and overestimate the observed variability.
The downscaled results of the LSTM method were found
to have remarkably lower errors than those of the other
methods. LSTMs have a “memory” which enables them
to identify and capture the previously calculated useful
information, and pass them along to the next iteration.
Moreover, the daily temperature has a close connection
with the temperature of previous days. Incorporating
antecedent predictor values could improve the accuracy
of temperature prediction (Coulibaly et al., 2005).

It has been observed from all the results that LSTM
method outperform other two standard deep learning
methods. RNNs utilize internal state memory exploiting

FIGURE 12 Distribution map of spatial variation for the observed, model and downscaled maximum temperature based on the LSTM,

DNN and RNN methods of Indo-Gangetic Plain (India) for the validation set (2007–2010). [Colour figure can be viewed at

wileyonlinelibrary.com]
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the temporal dependencies and hence in most of the
observed results perform better or closer to DNNs. How-
ever, as RNNs suffer from vanishing gradient issue;
LSTMs outperform RNNs and DNNs for the time-series
prediction task (Shah et al., 2018). Additionally, the time
complexity of LSTMs is of O(1) (Order of one) as com-
pared to DNNs which depends on number of hyper
parameters as discussed in Pandey et al. (2021), hence,
they are much faster to implement which is an advan-
tage. Finally, the learning capabilities of both short- and
long-term dependencies due to the gated LSTM architec-
ture enables it to outperform other two deep learning
architectures.

3.4 | Heat waves events

The results show both the variations observed in captur-
ing heat wave events due to differences in the models as
well as due to the three different methods used in the
study (Figure 13). It is found that the models differ in
simulating heat wave events over the IGP from the

TABLE 4 Average mean values of all observed and GCMs

model downscaled maximum temperature based on the LSTM,

DNN and RNN methods of Indo-Gangetic Plain (India) for the

validation period (2007–2010).

Model

MEAN_2007

OBS LSTM DNN RNN

ACCESS-CM2 31.20 31.70 33.44 31.90

ACCESS-ESM1-5 31.20 29.95 29.59 28.13

AWI-CM-1-1-MR 31.20 31.63 33.02 30.07

AWI-ESM-1-1-LR 31.20 29.74 28.74 27.87

BCC-CSM2-MR 31.20 31.79 31.63 31.39

BCC-ESM1 31.20 28.36 27.69 27.74

CMCC-ESM2 31.20 32.21 32.66 33.01

MPI-ESM1-2-HR 31.20 30.63 31.00 30.30

MPI-ESM1-2-LR 31.20 29.73 29.31 29.28

MRI-ESM2-0 31.20 31.60 32.28 29.41

NorESM2-LM 31.20 29.59 29.29 29.16

NorESM2-MM 31.20 31.50 30.55 32.72

TaiESM1 31.20 32.57 33.37 33.46

FIGURE 13 Spatial distribution of total number of heat wave events over the IGP for the validation period 2007–2010 (Mar–Jun).
[Colour figure can be viewed at wileyonlinelibrary.com]
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observed heat wave events which ranges from 13 to 28 in
all of the three methods. The results show that down-
scaled model outputs observe heat waves in three classes,
that is, high (28–33), intermediate (23–27) and low (17–
22) ranges of heat wave events. Out of the three methods
it was found that most of the models simulated heat wave
in the high range of 27–30 followed by intermediate
24 and only two in the lower range �17–19. Among the
models, MPI-ESM1-2-HR (17–19) and TaiESM1 (19–22)
are found to record heat wave in the lower range of heat
wave events over all the grids in all of the three methods
with LSTM downscaled output showing more spatial var-
iation than DNN and RNN. ACCESS-ESM1-5 (30), AWI-
ESM-1-1-LR (30), ACCESS-CM2 (27–28), CMCC-ESM2
(28–29), MPI-ESM1-2-LR (30–33) and MRI-ESM2-0 (30–
33) models over predicted the heat waves as compared to
the observed heat wave events throughout the IGP with
spatial variability exhibited by only MPI-ESM1-2-LR,
MRI-ESM2-0, and only AWI-CM-1-1-MR (21–24), BCC-
CSM2-MR-LSTM (24), and BCC-ESM1 (26–27) recorded
heat wave in the intermediate range (Figure 13). Among
all the models it was found that NorESM2-MM per-
formed best in simulating heat waves with similar range
to the range of observation. The frequency of heat wave
events ranges from 13 to 28 over the study period which
is closely approximated by the model in the three
methods by LSTM (12–28) followed by RNN (13–31) and
DNN (15–29). The spatial distribution varies with the
method and zones when compared with the observation
(Figure 1). For NorESM2-MM, LSTM performs better in
the Middle Gangetic Plain and Lower Gangetic Plain
whereas RNN and DNN show better performance in the
Trans Gangetic Plain and Upper Gangetic Plain. Further,
LSTM overestimates the heat wave occurrence in Trans
and Upper Gangetic Plain while DNN and RNN overesti-
mate heat wave frequency in the Lower Gangetic Plain,
and both over- and underestimation across the grids of
Middle Gangetic Plain. For all the models the occurrence
of heat wave events within the zones are more consistent
in LSTM than DNN and RNN. It was found that the
downscaled outputs of the models did not show large vari-
ation in range and spatial distribution for the three
methods employed. However, among the three methods it
was found that in case of DNN and RNN models could
not approximate the spatial variability and simulated rela-
tively the higher range as compared to the observed heat
wave events when compared to LSTM which approxi-
mated both range and spatial variability better. It is also
noteworthy that the uncertainty observed in the heat wave
prediction is more due to the use of different models than
due to the three methods. Out of the three methods DNN
and RNN showed similar results but LSTM outperformed
both the methods. Overall, all of the three deep learning

methods performed well but LSTM was better and so can
be used to study heat waves over India.

4 | CONCLUSION

This study investigated the performance of deep learning
methods, namely LSTM, DNN and RNN, for downscaling
daily Tmax for CMIP6, GCMs 13 models over IGP, India.
The study found that the spatial distribution of LSTM show
the best in downscaling daily temperature in validation
period, while DNN and RNN mix result has been found the
maximum temperature against the observation for all the
13 GCMs models. LSTM was also found to be better than
DNN and RNN on the basis of other model performance
metrics, spatiotemporal and intra-annual variability, as
compared to the observed dataset for all the GCMs models.
The improved performance of the LSTM can be explained
by its ability to learn long-term dependencies in sequential
datasets. Meanwhile, in case of analysing the extremes, that
is, heat wave events, it was observed that LSTM method
captured the range of the events similar to the observation
and better than RNN and DNN. In terms of approximating
the spatial distribution and variability, LSTM showed simi-
lar distribution of heat wave events in the Middle Gangetic
Plain and Lower Gangetic Plain. While DNN and RNN
were closer to the observation in the Trans Gangetic Plain
and Upper Gangetic Plain. The intermodel variations were
not much pronounced, but LSTM outperformed the two
methods when both spatial and temporal characteristics
were considered; therefore, it can be concluded that LSTM
performed well for heat wave events. On the basis of the
statistical and extreme event analysis, LSTM was found to
highly resonate with the mean and extreme characteristics
of the observed temperature data. The study concludes that
LSTM showed better performance than DNN and RNN
models in the downscaling CMIP6 GCM Tmax data and
can be used for downscaling of other CMIP6-GCMs data
over IGP. The use of deep learning methods is still incipient
in the field of climate studies, and so our study will be
instrumental in supporting and validating the use of deep
learning in the field of climate science. The study provides a
parallel, computationally and time efficient technique of
downscaling GCM datasets for proving more accurate
regional climate information which can be used in different
climate impact assessment studies both for present and
future period.
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