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A B S T R A C T

Climate change poses a serious challenge to global agriculture, particularly by altering crop phenology and yield 
dynamics. This study investigates the phenological responses of tomato crops to anticipated climate scenarios by 
employing a Crop Simulation model, Decision Support System for Agrotechnology Transfer (DSSAT). Simulations 
were conducted for Central India under two Shared Socioeconomic Pathways (SSP 4.5 and SSP 8.5) across three 
temporal windows: near-century (2010–2039), mid-century (2040–2069), and far-century (2070–2099). His
torical climate data and calibrated genetic coefficients were used to project shifts in flowering and fruiting stages 
under varying climate conditions. The study assessed the impacts of projected changes in temperature (T), solar 
radiation (Srad), and precipitation (PPT) patterns on phenological development. Climate input datasets were 
sourced from IMD, IPCC, and six CMIP6- Global Climate Models. Results revealed a distinct phenological 
advancement, characterised by a reduction in days to flowering and fruiting, along with a concurrent decline in 
tomato yield (Ton/ha) across all future timeframes. Increased growing season temperatures and marginal re
ductions in Srad were observed to accelerate crop development, while altered rainfall patterns influenced spatial 
variability in production. Notably, enhanced evapotranspiration demand driven by warming trends may be 
partially moderated by decreased radiation levels. Spatial rainfall analysis indicated intensified PPT in central 
zones, whereas western and northwestern regions may experience monsoonal weakening and prolonged dry 
spells. Model performance showed robust agreement with observed yields (R = 0.78), with validation metri
cs—MAE = 5.9, RMSE = 6.93, and Bias = -1.43—demonstrating consistent predictive accuracy with slight 
underestimation. The Nash–Sutcliffe Efficiency (NSE = 0.59) further affirms the model’s applicability under 
future climate conditions. This research underscores the utility of process-based models in decoding climate–
phenology–yield relationships and provides critical insights to inform climate-resilient agricultural strategies for 
sustainable tomato production in vulnerable agro-ecological regions.

1. Introduction

Tomato (Solanum lycopersicum L.) is one of the most widely culti
vated vegetable crops worldwide and holds a pivotal role in global food 
and nutritional security. It is the second-most consumed vegetable after 
potatoes and ranks as the second-largest horticultural crop produced for 
human consumption [1]. In addition to its culinary versatility, tomato is 
a rich source of vitamins (notably vitamin C), minerals, and 

health-promoting antioxidants such as lycopene, which are associated 
with reduced risks of cardiovascular diseases and certain cancers [2,3]. 
India stands as the second-largest producer of tomatoes globally, 
following China and ahead of the United States and Turkey [4]. Among 
Indian states, Madhya Pradesh (MP) leads in production, yielding 
approximately 2970 thousand tonnes and accounting for 14.63 % of the 
national output [5]. Despite its economic and nutritional importance, 
tomato cultivation is increasingly vulnerable to the impacts of climate 
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change (CC). The 21st century has seen a surge in global concerns over 
rising temperatures (Ts), erratic precipitation (PPT) patterns, and 
increased frequency of extreme weather events, which collectively 
threaten the sustainability of open-field horticultural systems [6]. To
matoes, being sensitive to environmental cues, exhibit pronounced 
changes in phenology, fruit set, and yield under climatic stress [7]. 
Elevated Ts can shorten developmental phases, disrupt flowering and 
pollination processes, and heighten susceptibility to pests and diseases 
[8]. Consequently, there is an urgent need to develop robust adaptation 
and mitigation strategies, including the deployment of climate-resilient 
genotypes, predictive crop modeling tools, and data-driven agricultural 
practices [9,10].

Phenology—the study of periodic plant life cycle events such as 
flowering, fruiting, and maturation—is a vital indicator of how crops 
respond to environmental changes [11]. In climate-sensitive crops like 
tomato, phenological stages are tightly regulated by climatic variables 
such as temperature (T), PPT, and solar radiation (Srad) [12]. CC is 
disrupting these variables, causing observable phenological shifts (PS), 
including earlier or delayed flowering and fruiting, which impact syn
chronization with optimal growth conditions and reduce yield and 
quality [13,14]. Elevated T accelerates crop development, leading to 
early phenophases, but extreme heat, particularly above 30 ◦C during 
flowering, can impair fruit set and quality in tomato [15,16]. Likewise, 
irregular PPT patterns and water stress during critical stages such as 
flowering can reduce productivity, while excessive rainfall increases 
susceptibility to diseases [17]. Photoperiod sensitivity also plays a role 
in regulating reproductive stages, with deviations in day length influ
encing flowering and fruiting timing [18]. Furthermore, soil con
ditions—such as moisture and nutrient availability—modulate 
phenological responses, where early or delayed flowering can inform 
adjustments in irrigation, fertilization, or pest management [19]. These 
phenological and physiological disruptions underscore the vulnerability 
of tomato crops to ongoing climatic variability and highlight the need 
for adaptive management practices.

With ongoing CC, this kind of PS in crops like tomatoes is becoming 
increasingly significant [20]. Various climate scenarios, based on global 
socioeconomic developments and greenhouse gas emissions, help sci
entists predict how different crops will respond to these changes. Global 
Climate Models (GCMs), using frameworks such as Shared Socioeco
nomic Pathways (SSPs), predict how different socioeconomic and 
emissions trajectories will impact climate systems and crop phenology 
[21]. SSPs offer a broader perspective by incorporating not just emis
sions but also global development patterns, including technological 
advances, economic growth, and societal behaviours. For instance, 
under SSP1 (Sustainability Pathway), where global efforts are directed 
toward sustainable development and low emissions, tomato crops may 
experience mild PS. These shifts might include slightly earlier flowering 
and fruiting, with minimal disruptions to crop management. In contrast, 
under SSP3 (Regional Rivalry), where there is regional fragmentation, 
poor international cooperation, and high greenhouse gas emissions, the 
PS in tomato crops could be more extreme [22]. Tomatoes may flower 
and ripen much earlier, with extreme heat and water stress potentially 
reducing crop yields and fruit quality. By incorporating these climate 
scenarios based on SSPs, scientists and agricultural planners can better 
anticipate the effects of CC on tomato crop phenology and develop 
appropriate adaptation strategies for different regions and future 
climate conditions [23].

Numerous studies have explored the influence of climate change on 
crop phenology and productivity, including tomatoes, using both 
empirical observations and modeling approaches [24,25]. In the Indian 
context, research has predominantly focused on staple cereal crops such 
as rice and wheat, with relatively limited attention to horticultural crops 
like tomato. While recent efforts have examined the effects of T and 
water stress on tomato yield using observational or statistical ap
proaches [26,27], these studies often lack the process-level detail 
needed to capture physiological responses under future climate 

conditions. To our knowledge, this study presents the first application of 
the DSSAT-CROPGRO-Tomato model to simulate and quantify 
climate-induced PS in tomato crops in Central India, a region highly 
susceptible to climatic variability. By integrating high-resolution 
climate projections with a process-based crop simulation model, the 
study aims to deliver a mechanistic understanding of how key climatic 
drivers—T, PPT and Srad influence tomato development and yield tra
jectories under future climate scenarios. This modeling approach en
hances the precision of predictions and enables the design of 
location-specific, climate-resilient management strategies for tomato 
cultivation.

In purview of the above, this research examines the 1) phenological 
shifts in tomato harvests across several climatic projections i.e. near- 
(2010–2039), mid- (2040–2069), and far- (2070–2099), under two 
different scenarios—SSP2–4.5 (moderate emissions) and SSP5–8.5 (high 
emissions 2) Assess the impact of CC on Tomato Yield and Optimize 
Agricultural Practices for Future Climate Conditions 3) Develop a 
process-based crop model for tomato crops and validate its accuracy 
using historical and experimental data from Central India 4) To evaluate 
the phenological responses of tomato crops to various climate scenarios, 
providing essential insights for farmers, agricultural planners, and pol
icymakers to alleviate the effects of CC on tomato output.

2. Study area

This research undertaken in the central part of India, MP, which is 
agriculturally diverse and prominently contributes to the nation’s crop 
productivity, especially tomato production. MP is a centrally located 
state in India, known as the "Heart of India" due to its strategic position 
(Fig. 1). The entire province of MP, the 2nd largest state in India, has a 
vast amount of biodiversity and is included in the research study area. 
With a total size of 308,144 square kilometres, the state occupies 9.4 % 
of the nation’s total land area (source: ncert.nic.in).

The area lies between 26.86◦N and 21.07◦N latitudes and 74.03◦E 
and 82.81◦E longitudes. MP experiences a predominantly tropical 
monsoon climate. Out of the 307.56 lakh hectares of the entire 
geographical area in the state, only 151.91 lakh hectares are arable [28]. 
There are currently 119 lakh hectares used for Rabi crops and 145 lakh 
hectares used for Kharif crops. Crops enclose 65.70 % of the state. This 
state encompasses various agroecological zones, ranging from the Nar
mada Valley in the south to the Malwa plateau and Bundelkhand region 
in the north. Because of the State’s diverse climate, it is divided into 11 
climatic zones and 5 crop regions (source: mpkrishi.mp.gov.in). The 
study’s findings will help improve agricultural strategies and resilience 
in the tomato sector.

3. Datasets and methodology

Crop simulation models (CSMs) simulate the growth and yield of 
crops under varying environmental and management conditions by 
employing mathematical formulations and physiological algorithms. 
These models integrate multiple input variables—such as soil charac
teristics, T, PPT, Srad, and crop management practices—to estimate crop 
performance and predict yield outcomes [29,30]. Their application is 
critical in assessing crop responses to climate variability and in 
designing adaptive strategies for sustainable agriculture.

3.1. Climate data

The India Meteorological Department (IMD) released long-term 
observed daily meteorological data from 1980 to 2009 for a grid of 28 
million pixels. The data was at a resolution of 0.5◦ × 0.5◦, which was 
later upscaled to 1.0◦ × 1.0 ◦. The data included the highest T, the lowest 
T, and rainfall. The Hargreaves and Samani technique [31] was used to 
estimate the daily external solar radiation data in MJ/m2/day units. The 
study utilised eight Global Climate Models (GCMs) to provide forecasts 
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of future climate conditions (Table 2). Data has been generated for each 
GCM across three distinct periods: 2010–2039 (near-future), 2040–2069 
(mid-future), and 2070–2099 (far-future). This data corresponds to two 
environmental change scenarios: SSP2 (Middle of the road)-4.5 and 
SSP5 (Fossil-fuel Development)-8.5. All GCMs data that were used in this 
study were Bias-adjusted. This process is essential because raw climate 
model data often contains biases due to limitations in model resolution 
and representation of physical processes. The statistical bias correction 
method is efficient for large-scale climate data and helps make climate 
projections more reliable for impact assessments [32]. The Coupled 
Model Intercomparison Project (phase 6) (CMIP6) gathers multiple 
simulations of GCMs now employed for this investigation of future 
climate changes throughout three distinct periods: near-future, mid-
future, and far-future. GCMs simulate the Earth’s physical processes and 
atmosphere to replicate climate reactions and changes in land use [33]. 

The CMIP6 also offers estimates for novel situations known as shared 
socioeconomic pathways (SSPs). Hence, it is crucial to utilise the newly 
published CMIP- GCMs (Coupled Model Intercomparison Project Global 
Climate Models) for climate forecasts for Shared Socioeconomic Path
ways (SSPs) to justify the vindication actions implemented based on 
earlier CMIP scenarios [34,35]. Multiple GCM outputs are utilised to 
determine the extent of uncertainty in assessing the lack of agreement 
between different models when assessing the effects of environmental 
change on crops (Table 1).

3.2. DSSAT model and functional architecture of DSSAT-CROPGRO

The DSSAT is an advanced computational framework designed to 
simulate crop growth, development, and yield under varying environ
mental and agronomic conditions. It integrates multiple components, 

Fig. 1. A map illustrating the precise location of the study area.
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including soil, plant, weather, and management practices, to provide a 
holistic understanding of crop-environment interactions (Fig. 2). The 
DSSAT-CSM incorporates structured data assimilation processes to 
translate environmental inputs into actionable agricultural insights 
[29]. One of the core modules within this system is DSSAT-CROPGRO, 
which is widely utilized in over 100 countries to evaluate agricultural 
systems, forecast crop behaviour, and assess climate adaptation strate
gies (source: dssat.net [44]). The CROPGRO-Tomato model, imple
mented in DSSAT v4.8.2, is specifically used to simulate tomato 
development and yield under diverse environmental and management 
circumstances (Fig. 3). This model has been extensively applied to 
optimize crop management strategies for improved productivity and 
sustainability [45,46]. 

➢ Background of the CROPGRO-Tomato Model- The CROPGRO- 
Tomato model within the DSSAT framework simulates crop 

growth, yield and phenological development through a series of 
mechanistic sub-models that represent key biophysical processes. 
The core equations governing these processes are outlined below 
through Eq. i-vi):

1) Phenological Development (Thermal Time Accumulation) 

TT = Σ
(
Tavg − Tbase

)
(i) 

Where, TT: Accumulated thermal time ( ◦C-days); Tavg: Daily average 
temperature = (Tmax + Tmin)/2; and Tbase: Base temperature (typically 
10 ◦C for tomato). Each growth stage—from emergence to flowering and 
fruit maturity—is initiated once specific TT thresholds are met, making 
it a reliable predictor of crop progression under varying climatic 

Table 1 
GCMs CMIP6 considered in the research.

S. 
No.

Model Institution/Country Resolution Period References Other Details

1 ACCESS- 
CM2

Australian Research Council Centre of Excellence 
for Climate System Science, Australia

1.25◦ ×

1.875◦

1950–2100 Smith et al. 
[36]

Focuses on Southern Hemisphere climate 
variations, coupled atmosphere-ocean model

2 NorESM2- 
LM

Norwegian Climate Centre, Norway 2◦ × 2◦ 1850–2100 Hansen et al. 
[37]

Includes detailed representation of ocean 
biogeochemistry

3 CMCC-ESM2 Euro-Mediterranean Centre on Climate Change, 
Italy

0.942◦ ×

1.25◦

1900–2100 Rossi et al. [38] Emphasizes Mediterranean climate variability 
and regional extreme event simulations

4 FGOALS-g3 Chinese Academy of Sciences, China 2◦ × 2◦ 1960–2100 Li et al. [39] Developed with a focus on Asia-Pacific climate, 
improved monsoon simulation

5 MIROC6 JAMSTEC, Kanagawa, Japan 1.4◦ × 1.4◦ 1850–2100 Watanabe et al. 
[40]

Accurate simulation of ocean currents and El 
Niño-Southern Oscillation (ENSO)

6 MPI- 
ESM1–2-HR

Max Planck Institute for Meteorology, Germany 0.94◦ ×

0.94◦

1850–2100 Mauritsen et al. 
[41]

High-resolution version; better atmospheric 
circulation simulation

7 MPI- 
ESM1–2-LR

Max Planck Institute for Meteorology, Germany 1.875◦ ×

1.86◦

1850–2100 Muller et al. 
[42]

Low-resolution version; focuses on long-term 
climate trends

8 MRI-ESM2–0 Meteorological Research Institute, Ibaraki, Japan 1.125◦ ×

1.125◦

1950–2100 Yukimoto et al. 
[43]

Improved tropical cyclone simulation, good for 
regional impact studies

Fig. 2. From data to decisions: the synergistic flow of crop simulation models for smarter agriculture.
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conditions [29]. While TT directly governs phenology, it also influences 
yield by controlling the duration of photosynthetically active periods, 
particularly the reproductive phase. Accelerated TT accumulation due to 
elevated temperatures can shorten the fruit development window, 
limiting assimilate translocation and reducing final yield (Boote et al., 
2010). 

2) Biomass Accumulation via Radiation Use Efficiency 

ΔW = RUE × IPAR (ii) 

Where, ΔW: Daily increase in biomass (g/m²); RUE: Radiation use 
efficiency (g/MJ); and IPAR: Intercepted photosynthetically active ra
diation (MJ/m²). Biomass accumulation is essential for supporting fruit 
growth. Reductions in IPAR due to poor canopy development or envi
ronmental stress can suppress yield potential by limiting source strength 
[47]. 

3) Leaf Area Index (LAI) 

LAI = SLA × Wleaf (iii) 

Where, LAI: (m² leaf/m² ground); SLA: Specific Leaf Area (m²/g); and 
Wleaf: Leaf dry weight (g/m²). LAI is pivotal for both phenology and 
yield, as it regulates intercepted solar radiation and influences photo
synthesis. It also shapes canopy microclimate (light, temperature, hu
midity), which affects developmental timing [29]. Optimal LAI supports 
effective source–sink dynamics, while suboptimal values under stress 
can reduce yield and delay or disrupt flowering and fruit maturation 
[30]. 

4) Fruit Dry Matter Allocation 

Fruit Dry Weight = Total Biomass

× Fruit Partitioning Fraction (iv) 

This equation determines the fraction of total assimilated biomass 
allocated to fruit. Fruit yield is inherently sensitive to the amount and 
duration of biomass availability during the reproductive phase [47]. 

5) Conversion to Fresh Yield 

Yieldfresh = Fruit Dry Weight × [100 / (100 − %Water)] (v) 

Tomato fruits typically contain 90–94 % water. This equation allows 
conversion of simulated fruit dry matter into fresh yield values suitable 
for field validation and comparison with harvest data [29]. 

6) Environmental Stress Modulation 

SFactual = min
(
SFwater, SFnitrogen, SFtemperature

)
(vi) 

Each stress scalar ranges from 0 (complete stress) to 1 (no stress), 
dynamically scaling growth and development rates. This adjustment 
affects photosynthesis, biomass accumulation, and phenology. For 
example, heat or nitrogen stress can accelerate phenological progression 
or impair reproductive development, resulting in lower yield [48,49].

3.3. Operational framework and calibration of the DSSAT-CROPGRO- 
Tomato model for climate-responsive yield simulation

The DSSAT-CROPGRO-Tomato model requires multiple input vari
ables to simulate crop growth and yield accurately. These include 
climate data, which encompasses daily meteorological parameters such 
as T, PPT, and Srad, recorded at a specific geographic location over the 
crop-growing period. Soil data is another crucial input, providing in
formation on soil properties like texture, organic matter content, and 
pH, all of which influence water retention, nutrient availability, and root 

Fig. 3. Outline of the general methodology of the DSSAT- CROPGRO- Tomato model.
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development. Additionally, crop parameters, including genetic co
efficients, govern key aspects of crop phenology, growth stages, and 
yield potential. Management practices such as planting dates, irrigation 
schedules, fertilization regimes, and pest control strategies also play a 
significant role in defining the crop’s response under various environ
mental conditions (Fig. 2) [50]. These elements are systematically pro
cessed within the DSSAT-CROPGRO simulation engine, which models 
daily crop growth dynamics, water balance, and nutrient uptake. The 
model operates through an iterative computational sequence, beginning 
with run initialization, where it sets up predefined conditions [51]. This 
is followed by seasonal parameterization, establishing environmental 
settings for each simulation cycle. Subsequently, the model executes 
daily rate calculations, integrating physiological responses over time to 
simulate plant development and resource utilization. The final outputs 
include yield predictions, phenological shifts, and resource-use effi
ciency metrics, which undergo post-processing for validation and 
refinement [29]. The DSSAT-CSM is designed with a modular structure, 
enabling the seamless integration of multiple crop models within a 
unified computational framework (Fig. 3). This architecture allows all 
crop models to share common soil process components and management 
modules, ensuring consistency across different cropping systems. Such 
an approach is particularly beneficial for simulating crop rotations, as it 
facilitates the continuous operation of soil processes, nutrient cycling, 
and field management activities across multiple growing seasons [52]. 
By maintaining the interactions between soil and crops over time, this 
design enhances the accuracy of long-term agricultural assessments and 
improves predictions of productivity under varying environmental 
conditions [53,54].

To ensure reliable performance, the CROPGRO-Tomato model was 
calibrated using an iterative parameter adjustment approach, following 
the methodology outlined by Hunt et al. [46] and Godwin et al. [46,55]. 
This calibration process involved trial-and-error modifications to refine 
model outputs, aligning simulated crop phenology and yield with 
observed field data. By accurately representing tomato growth under 
different environmental conditions, the model serves as a valuable tool 
for optimizing crop management strategies. Through field-based simu
lations, growers, researchers, and policymakers can develop site-specific 
agricultural practices tailored to local climatic and soil conditions, 
improving decision-making for sustainable crop production. The 
DSSAT-CROPGRO framework provides a robust decision-support tool 
for enhancing precision agriculture and resource management [56]. By 
integrating diverse agronomic, climatic, and management factors, it 
enables comprehensive evaluations of crop performance, facilitating 
improved adaptation strategies under changing climatic scenarios. This 
predictive capability strengthens efforts toward sustainable food pro
duction, efficient resource utilization, and climate-resilient farming 
systems [29].

3.4. Crop data and variety

Using an increased amount of CO2 {per IPCC-6th AR and [57]} to the 
baseline CO2 measurement of 380 ppm (by default value) for every 
environmental scenario and timeframe, the CROPGRO-Tomato model 
was employed to simulate tomato phenology and yield. One of the input 
parameters that the module uses is climate data. The tomato cultivar 
used in this study, Narendra Tomato-4 (NDT-4), is normally planted in 
September or October and harvested 60–80 days after transplantation 
[58]. Based on secondary data collected for MP, the initial field condi
tions were given [51,59]. In this study, the DSSAT-CROPGRO-Tomato 
model was calibrated to simulate the growth and phenology of the to
mato cultivar NDT-4. The model initially utilized genetic coefficients 
previously developed and validated by Yadav et al. [60] for tomato 
simulation in northern Indian conditions. However, to ensure model 
accuracy and regional applicability under current climatic and experi
mental conditions, further refinement was carried out. Calibration of 
genotype-specific parameters was conducted using a combination of the 

Genotype Coefficient Calculator (GENCALC) and the Generalized Like
lihood Uncertainty Estimation (GLUE) method. These tools enabled 
iterative adjustment of genetic coefficients to minimize discrepancies 
between observed and simulated yield attributes. The parameters were 
tuned within physiologically plausible limits based on literature values 
and expert knowledge. The final set of calibrated coefficients for the 
NDT-4 cultivar is presented in Table 2. This calibration process was 
critical to improving the model’s predictive capacity under future 
climate scenarios in Central India (MP).

To determine how phenological stages (flowering and fruiting) 
responded to weather factors like T, Srad and CO2 change, simulations 
were run at the potential level. This implies that during the simulations, 
neither water stress nor nutritional stress was considered. Running the 
DSSAT-CROPGRO model potentially provides a foundation for devel
oping targeted interventions to improve crop resilience and productivity 
in the face of changing climatic conditions [61]. However, this can lead 
to overestimation of yields, as actual field conditions often involve 
varying degrees of water and nutrient limitations or other stress factors. 
An analysis of the uncertainty around the degree of change in tomato 
performance led to the creation of 48 climate scenarios, comprising 8 
models, 2 scenarios, and 3 time periods. As we all know, CMIP6 started 
in 2015, by incorporating historical data into the 2010–2014 period, the 
near-term projections (2010–2039) are transformed into a hybrid 
dataset that commences with observed data and progresses to modeled 
projections, thereby enabling the analysis of a continuous time series 
(carbonbrief.org).

3.5. Statistical evaluation and model assessment

The efficacy of the DSSAT CROPGRO-Tomato model was evaluated 
by comparing simulated tomato yields with observed yields over five 
consecutive cropping years: 2019–2020, 2020–2021, 2021–2022, 
2022–2023, and 2023–2024. Observed yield data were obtained from 
the Horticulture Area Production Information System (HAPIS) portal, 
which provides district-level yield statistics for horticultural crops across 
India (Department of Agriculture and Farmers Welfare, n.d.[5]). To 
ensure spatial consistency with the model simulations, district-level 
yields were aggregated and spatially averaged across 28 grid points 

Table 2 
Calibrated genetic coefficients for CROPGRO-Tomato Model (Cultivar NDT-4).

Genetic 
Coefficient

Description Calibrated 
Range

Final 
Value

EM-FL Time from emergence to flowering 
(R1) [photothermal days]

8–20 10.0

FL-SH Time from flowering to first pod (R3) 
[photothermal days]

5–15 6.0

FL-SD Time from flowering to first seed 
(R5) [photothermal days]

10–18 12.0

SD-PM Time from first seed to physiological 
maturity (R7) [photothermal days]

30–50 40.0

FL-LF First flower to end of leaf expansion 
[photothermal days]

30–50 40.0

LFMAX Peak photosynthetic rate [mg CO₂ 
m⁻² s⁻¹]

1.0–1.5 1.160

SLAVR Specific leaf area [cm² g⁻¹] 300–400 350
SIZLF Maximum size of a full leaf (three 

leaflets) [cm²]
250–350 300

XFRT Maximum fraction of daily fruit 
growth

0.8–1.0 1.0

WTPSD Maximum weight per seed [g] 0.003–0.005 0.004
SFDUR Seed filling duration [photothermal 

days]
20–30 25.0

SDPDV Average number of seeds per pod 300–500 400
PODUR Time to reach final pod load 

[photothermal days]
30–45 40.0

THRSH Threshing percentage [ %] 8–10 9.0
SDPRO Protein fraction in seed [g/g] 0.25–0.35 0.300
SDLIP Oil fraction in seed [g/g] 0.000–0.01 0.000
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representing the study area (Fig. 1). These grid points served as the 
spatial framework for both model execution and yield validation, 
allowing for direct comparison between simulated and observed data. 
Model performance was quantitatively evaluated using standard statis
tical indicators (Eq. vii-xii), including Root Mean Square Error (RMSE), 
Bias, Mean Absolute Error (MAE), Nash–Sutcliffe Efficiency (NSE), 
Pearson’s correlation coefficient (r), and the Coefficient of Determina
tion (R²). The validation method of the yield output generated by the 

DSSAT-CROPGRO Tomato model often involves juxtaposing the model’s 
projected outcomes with observed data gathered from diverse locations 
and conditions. The technique may involve iterative modifications of 
parameters, including genetic coefficients, soil properties, and climatic 
conditions, succeeded by comparisons of the results with empirical data 
for each of the 28 grids. This repeated process persists until a satisfactory 
alignment is achieved. 

Fig. 4. Spatial distribution of change in average temperature ( ◦C) from the reference period (1980–2009) and make projections across different CMIP6 models under 
SSP2-4.5 and SSP5-8.5 scenarios for near (2010–2039), mid (2040–2069), and far future (2070–2099).

P.N. Singh et al.                                                                                                                                                                                                                                 Smart Agricultural Technology 12 (2025) 101256 

7 



RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1 (Pi − Oi)
2

n

√

(vii) 

Bias =
1
n
∑

|Pi − Oi| (viii) 

MAE =
1
n
∑

|Oi − Pi| (ix) 

NSE = 1 −

∑
(Oi − Pi)

2

∑(
Oi − O

ˉ )2 (x) 

r =
∑

(
Xi − X)(Yi − Y)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

(Xi − X)
2 ∑

(Yi − Y)
2

√ (xi) 

Fig. 5. Spatial distribution of change in solar radiation (Srad) (in MJ/ (m2.d)) from reference period (1980–2009) and make projections across different CMIP6 
models under SSP2-4.5 and SSP5-8.5 scenarios for near (2010–2039), mid (2040–2069), and far future (2070–2099).
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To validate the model’s conclusions, we utilised five years 
(2019–2023) of observed tomato yield data (in ton/ha) for each grid 
across the MP region. The model demonstrates a moderate to good level 
of accuracy in forecasting tomato yields for each grid and considered 

year. The correlations frequently exhibit a high magnitude, suggesting a 
robust linear association between observed and projected yields. MAE 
and RMSE values are comparatively low, indicating that the model’s 
predictions are, on average, near the observed values. The Bias scores 
indicate a minor underestimation of yields across years. The NSE values 
indicate moderate model efficiency, with opportunities for further 
refinement. The R² values indicate that the model accounts for a sub
stantial fraction of the variability in the reported yields.

Fig. 6. Spatial distribution of historical (1980–2009) and projected rainfall (mm/season) under SSP2-4.5 and SSP5-8.5 scenarios for near (2010–2039), mid 
(2040–2069), and far future (2070–2099).
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4. Results & discussion

4.1. Simulated yield responses to projected hydro-climatic variability

The spatiotemporal analysis of hydro-climatic variables across MP 
(Figs. 4–6) highlights projected shifts in key environmental drivers—T, 
PPT, and Srad—under future climate scenarios. Although these figures 
illustrate climate model outputs, their implications for tomato produc
tivity are interpreted through their integration as input drivers within 
the DSSAT-CROPGRO-Tomato model, which simulates yield responses 
under seasonal and region-specific conditions. As the present study fo
cuses on winter-season tomato cultivation, model simulations demon
strate that even modest increases in average T—especially during 
critical growth phases such as flowering and fruit set—can lead to 
reduced yield potential. Tomato plants grown during winter typically 
perform optimally within a T range of 15 ◦C to 25 ◦C. Deviations beyond 
this can impair floral development, fruit set, and photosynthetic effi
ciency [62]. Moreover, increased Ts may accelerate evapotranspiration, 
intensify soil moisture stress and shorten phenological stages, both of 
which negatively impact yield formation. Simulated yield declines are 
also influenced by PPT patterns, where prolonged dry spells lead to 
inadequate moisture availability during flowering, and excessive rainfall 
increases the risk of nutrient leaching and root diseases. Srad, an 
essential driver of photosynthesis, plays a pivotal role during the rela
tively short winter photoperiod. Reduced Srad may lead to delayed fruit 
development and lower biomass accumulation [63]. While elevated CO₂ 
concentrations may enhance photosynthesis and water-use efficiency, 
their positive effects are often negated by concurrent thermal and hydric 
stresses [17,64]. Thus, the projected spatiotemporal trends in 
hydro-climatic variables are mechanistically linked to the simulated 
yield responses in our study, underlining the complex interplay between 
climate change and tomato crop productivity across Central India.

4.1.1. Change in the seasonal average temperature
Across all scenarios and timeframes, the SSP5-8.5 pathway consis

tently predicts greater average temperature (Tavg) increases compared 
to SSP2-4.5, highlighting the impact of higher greenhouse gas emissions. 
This section examines the change in Tavg from the reference period of 
1980–2009 to future projections for different timeframes: the near 
future (2010–2039), mid-future (2040–2069), and far future 
(2070–2099) (Fig. 4). The annual T deviations from the reference period 
indicate an overall increase in Tavg across the entire state of MP, with a 
few exceptions in the southwestern districts, including Jhabua, Dhar, 
and Mandsaur, under both the SSP2-4.5 and SSP5-8.5 scenarios for the 

mid and far future. Regions such as Sidhi, Mandla, and Bhind experience 
rising Ts, while Jhabua and the entire Nimar region show a slight 
decrease in Tavg from the reference period in the near future under both 
scenarios. In the mid- and long-term future, peak Tavg variations present 
a clearer picture. There is a notable increase in Tavg over the northern 
and eastern Agro-Climatic Zones (ACZs), while the southwestern ACZs 
show a decrease. In the distant future, SSP5-8.5 projects significant 
warming for Mandla and Sidhi, with Tavg increases exceeding 8 ◦C in 
certain areas. Central and northeastern zones are particularly affected, 
indicating a drastic rise in Tavg under high-emission scenarios. Both 
SSP2-4.5 and SSP5-8.5 climatic scenarios indicate that the cm2 model 
consistently overestimates Tavg, while the MIROC6 model steadily un
derestimates them across all conditions (Fig. 4).

The Tavg has a direct effect on the growth and development of crops 
and has the potential to substantially alter plant phenology [65]. These 
are frequently disregarded components of plant ecology, yet they have 
substantial implications for agricultural productivity [66,67]. MP is one 
of India’s largest states (by area), and the majority of it is a jutting 
plateau; thus, it is extremely vulnerable to Tavg fluctuations in terms of 
health, agriculture and economic implications. Elevated Ts can signifi
cantly impact the phenology and yield of tomato crops. Exposure to high 
temperatures, particularly during the reproductive phase, can disrupt 
flowering, fruit set, and ripening processes. Previous studies suggest that 
even a 1- 2 ◦C increase in Tavg can reduce crop yield and alter pheno
logical stages [68,8]. Furthermore, warming trends during the winter 
season could impact vernalization-dependent crops, altering their 
growth cycles [69]. To alleviate the detrimental impacts of increasing 
Tavg, it is imperative to employ adaptive tactics, such as modifying 
planting schedules, choosing heat-resistant tomato cultivars, and 
adopting effective watering techniques [70].

4.1.2. Variability in solar radiation
The model ensembles indicate a decline in Srad for both the SSP2-4.5 

and SSP5-8.5 scenarios, except for the near future (2010–2039) under 
SSP2-4.5. In the central and western regions of MP, the models ACCESS 
CM2, MPI ESM HR, FGOALS g3, MPI ESM LR, MRI ESM2.0, and MIROC6 
project a decline in Srad. The only exceptions are the models NorESM2- 
LM and CMCC ESM2, which show different results under both the SSP2- 
4.5 and SSP5-8.5 scenarios for the mid-future (2040–2069) and far 
future (2070–2099). For near-term projections, almost all models, 
except for ACCESS CM2 and MRI ESM2.0, predict an increase in Srad for 
both climate change scenarios (SSP2-4.5 and SSP5-8.5). Regions such as 
Balaghat, Mandla, and Seoni exhibit an increase in Srad compared to the 
reference period (1980–2009) across all three time periods under both 

Fig. 6. (continued).
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climate scenarios (Fig. 5). The greatest increase in Srad during the near- 
future SSP5-8.5 scenario is observed in Mandla, with a rise of 2.93 MJ/ 
(m²⋅d), while Balaghat shows an increase of 3.68 MJ/(m²⋅d). In contrast, 
the most significant decrease in Srad in the far-future SSP5-8.5 scenario 
occurs in East Nimar (Burhanpur) and the Bhind region, with declines of 
− 2.48 and − 2.95 MJ/(m²⋅d), respectively. Models like CMCC ESM2, 
MIROC6, MPI ESM HR, MPI ESM LR, and FGOALS g3 show slight var
iations in Srad between the two scenarios across the three-time frames. 
According to the reference period (1980–2009), the model NorESM2-LM 
predicts a maximum increase in Srad of approximately 3.65 MJ/(m²⋅d) 
at Mandla for the SSP2-4.5 scenario in the distant future, while the 
model ACCESS CM2 forecasts a maximum decrease of about − 2.95 MJ/ 
(m²⋅d) at Bhind for the SSP5-8.5 scenario in the far future. Overall, for 
nearly all periods evaluated, the climate models NorESM2-LM and AC
CESS CM2 exhibit exaggerated and understated forecasts, respectively, 
under the SSP2-4.5 and SSP5-8.5 climate change scenarios (Fig. 5).

Tomato crops use Srad as their principal energy source for photo
synthesis. The amount of intercepted radiation controls the rate of 
photosynthesis, which causes differences in biomass accumulation [71]. 
The variability in Srad caused by climatic changes and air circumstances 
can substantially impact the physiological and phenological develop
ment of tomatoes. Reduced Srad from cloud cover, aerosol concentra
tion, or higher humidity may limit carbon assimilation, reducing dry 
matter buildup in leaves, stems, and fruits [72]. Several studies have 
found that variations in incoming Srad directly affect tomato output. A 
10–15 % reduction in sun radiation during important phenological 
stages (flowering and fruit set) has been linked to decreased fruit set and 
smaller fruit size [73]. The impact of Srad on tomato crops is also 
region-specific, varying across ACZs. Additionally, decreased Srad can 
endorse the growth of herbaceous plants with shallow root systems by 
decreasing surface soil evaporation and increasing soil moisture reten
tion [74]. In central India, agriculture is a critical component of the 
economy, and shifts in Srad could have substantial effects on crop yields, 
stressing food supplies (source: climatechange.mp.gov.in).

4.1.3. Variation in mean rainfall
Variations in PPT patterns markedly impact tomato crop yield by 

directly influencing soil moisture availability and nutrient absorption 
efficiency. Analysis of rainfall distribution over various grids in MP in
dicates that areas with unpredictable PPT—marked by extended dry 
periods succeeded by heavy rainfall—demonstrate a significant reduc
tion in tomato output. Moreover, documented data reveal that fluctua
tions in patterns of rainfall cause phenological changes in tomato crops, 
especially during the vital flowering and fruiting phases, which may 
result in diminished productivity and overall yield inconsistency [75].

The spatial distribution of historical (1980–2009) and projected 
rainfall (mm/season) under different scenarios (SSP2-4.5 and SSP5-8.5) 
for near (2010–2039), mid (2040–2069), and far future (2070–2099) 
unveils significant shifts in PPT regimes across MP, India. The historical 
precipitation data from IMD (1980–2009) exhibit pronounced spatial 
heterogeneity, with lower rainfall recorded in western and central MP 
and elevated PPT observed in the eastern and southeastern regions 
(Fig. 6). The baseline seasonal rainfall from October to March ranged 
from 8.39 mm to 62.69 mm. For the near future (2010–2039), under the 
SSP2-4.5 scenario, seasonal rainfall is projected to increase to 75.91 mm, 
while under SSP5-8.5, it is expected to reach 68.66 mm. This suggests a 
rising trend in off-season PPT, which may be beneficial for maintaining 
adequate soil moisture during the early vegetative and flowering stages 
of winter tomatoes. However, the western and northern regions remain 
susceptible to rainfall deficits, exacerbating drought conditions and 
increasing irrigation demands. Additionally, excessive rainfall could 
elevate the risk of fungal infections, such as early and late blight, 
potentially compromising fruit quality and yield [76]. In the mid-future 
(2040–2069), rainfall projections indicate a near-stabilization under 
SSP2-4.5 (25.33–76.60 mm) and a slight decline under SSP5-8.5 
(23.11–69.02 mm). The spatial distribution of PPT suggests a potential 

shift in rainfall zones, with increased rainfall concentration in central 
regions. Conversely, the western and northwestern areas exhibit a 
persistent decline in seasonal PPT, which could prolong dry spells and 
reduce crop water availability (Fig. 6). For winter tomato cultivation, 
additional reliance on supplemental irrigation may be necessary to 
prevent moisture stress during fruit maturation. Moreover, improved 
disease management strategies could be essential to reduce outbreaks of 
waterborne pathogens linked to excessive soil moisture [77]. For the 
distant future (2070–2099), substantial increases in PPT are projected, 
with rainfall reaching 83.46 mm under SSP2-4.5 and 84.52 mm under 
SSP5-8.5. The increased rainfall during the October–March period may 
enhance soil moisture retention and groundwater recharge, reducing 
dependency on irrigation. However, excessive moisture could lead to 
waterlogging, delayed fruit ripening, and increased post-harvest losses 
due to heightened humidity, thereby negatively affecting both yield and 
market quality [78]. In all future projections, Jhabua records the lowest 
rainfall due to its rain-shadow effect from the Aravalli and Vindhya 
ranges, limiting moisture-laden winds. Conversely, Mandla receives the 
highest rainfall, benefiting from orographic PPT influenced by the Sat
pura and Maikal ranges and higher forest cover aiding local PPT cycles 
[79]. The increasing variability in rainfall patterns may pose significant 
challenges for tomato crop development, particularly in aligning 
phenological stages with optimal soil moisture availability.

4.2. Change in days of Anthesis (Flowering) and pod (Fruits) formation

The climate models group shows a decrease (in days) in phenological 
stages, such as (a) change in days of Anthesis and (b) change in Pod 
formation, compared with baseline in both of the SSP2-4.5 and SSP5- 
8.5, change in the climate scenarios for different time frames (Fig. 7). 
The findings demonstrate that, though to varying degrees, days of its 
anthesis and pod development decrease in every circumstance. The 
variation across different models suggests that temperature and radia
tion changes influence the phenological response differently depending 
on the climate projection used. In the case of pod formation, the highest 
decrease was observed through MIROC6 (− 6.06 days) and then via 
Access CM-2 (− 6.00 days) of far future under scenario SSP5-8.5 and 
SSP2 4.5 at the Mandla region of M.P. The Bhind region experienced the 
greatest reduction in days of anthesis under SSP2-4.5 climate change 
scenarios, as evidenced by MRI ESM2 0 (− 2.89 days) for the future and 
MPI-ESM-1–2-HR (− 2.63 days) for the mid-future (Fig. 7). When 
compared to the reference period across the entire M.P., certain models, 
such as FGOALS_g3, ESM, and norESM-2, exhibit the lowest average 
change or reduction in days of anthesis and pod development under both 
scenarios over the entire time frame. The environment model Access 
CM-2 is an exception; it exhibits a minor increase in anthesis up to 1.34 
days under scenario SSP5-8.5 at a far time horizon as compared to the 
baseline era at the M.P. region’s Jhabua. Some models indicate that the 
number of days of anthesis in the Morena, Jhabua, and Balaghat regions 
for the far future under the SSP5-8.5 scenario will increase from the 
baseline period. Similarly, some models, such as CMCC ESM2, norESM- 
2, and MIROC6, indicate that the number of pod formation days will 
increase in the Morena and Jhabua regions shortly under the SSP2-4.5 
climate change scenarios.

The process of grain filling and settling begins at anthesis, also 
known as blossoming. Morning anthesis occurs between 9:00 and 10:00 
AM. On the first day of anthesis, pollen fertility is at its highest. As the 
flowers open during anthesis, the reproductive organs—the pistil and 
stamen—become visible, facilitating pollination [80]. The tomato fruit, 
which develops from the flower’s ovary, is consumed by humans. In the 
case of tomatoes, this ovary produces a fruit commonly referred to as a 
pod, or more broadly, a tomato. Once the ovules inside the pod become 
seeds, the pod begins to grow and change. During the transition from the 
anthesis process to fruit development, several stages occur, including 
cell division, enlargement, and differentiation. The rate and effective
ness of these processes can be affected by factors such as plant health, 
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Fig. 7. Using various climate models for MP, India, we simulated changes in phenological stages under SSP2 4.5 and SSP5 8.5 for the near future (2010–2039), mid- 
future (2040–2069), and far future (2070–2099). We compared these changes to the reference point (1980–2009).
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the success of pollination, and environmental conditions [81]. As 
climacteric fruits, tomatoes experience significant metabolic changes 
during their development. Sometimes, tomato plants may produce many 
flowers but fail to set fruit [82]. The reduction in anthesis and pod 
formation observed in our study can be attributed to multiple physio
logical and environmental factors, primarily governed by sink strength, 
hormonal regulation, and climatic influences. Gibberellins (GA1) and 
auxins (IAA) exhibit a dynamic interplay in regulating floral develop
ment, influencing anthesis timing and pod set efficiency. Reduced 
gibberellin biosynthesis or impaired signal transduction pathways have 
been linked to delayed floral induction, as seen in crops like wheat and 
sugar beet. Additionally, auxin-mediated upregulation of GA biosyn
thesis is essential for ensuring optimal pod formation, and any disrup
tions in this hormonal balance may adversely affect reproductive success 
[83]. Sink strength, which defines the capacity of developing pods to 
attract and utilize assimilates, plays a crucial role in pod setting. A 
weaker sink results in reduced translocation of photosynthates, leading 
to compromised pod development. This aligns with previous findings 
where pod carbon import was directly linked to dry matter accumula
tion and pod load [84].

Beyond intrinsic physiological factors, environmental conditions 
such as photoperiod and temperature further modulate anthesis and pod 
formation. Vernalization and specific light-duration responses have 
been shown to trigger flowering, suggesting that suboptimal tempera
ture and day-length conditions might contribute to delayed anthesis and 
reduced pod setting. Collectively, these insights emphasize the intricate 
coordination between biochemical pathways and environmental cues in 
governing reproductive success in crops. Optimizing hormonal dy
namics and managing environmental variables could serve as viable 
strategies to mitigate anthesis delays and enhance pod formation under 
changing climatic scenarios [84]. Elevated Ts accelerate the crop growth 
cycle, expediting anthesis by shortening the vegetative phase and 

hastening reproductive transitions. The advancement in pod formation 
timing under climate change conditions indicates a compressed repro
ductive window, potentially altering fruit development dynamics and 
jeopardizing yield stability [85]. While raised temperatures enhance 
pod and fruit development rates, they concurrently exacerbate floral 
abscission, diminish pollen viability, and degrade fruit quality. These 
phenological shifts pose significant risks to tomato yield and quality, 
potentially disrupting synchrony with pollinators, intensifying heat 
stress during crucial developmental stages, and misaligning water 
availability with crop demand [86]. To counteract these challenges, 
adaptive strategies—such as optimized sowing schedules, deployment of 
heat-resilient cultivars, and precision irrigation—will be imperative in 
sustaining tomato productivity under evolving climatic conditions.

4.3. Evaluation and validation of the DSSAT-CROPGRO-Tomato model

The yield prediction model’s performance was rigorously evaluated 
by analyzing observed versus predicted yield values across five years 
(2019–20 to 2023–24) (Fig. 8). A combination of scatter plots and key 
statistical metrics—including the R, R², MAE, RMSE, bias, and NSE—
provided a comprehensive assessment of the model’s predictive accu
racy and reliability.

The model demonstrated a strong correlation between observed and 
predicted yield values across all years, with R values ranging from 0.76 
to 0.80. The R² values varied between 0.57 and 0.63, indicating that the 
model explained 57 % to 63 % of the variance in yield predictions. 
Although these values suggest a reasonably good fit, there is potential 
for improvement, especially in reducing prediction errors. The MAE 
ranged from 5.73 to 6.15, while the RMSE fluctuated between 6.75 and 
7.15, reflecting consistent errors over the years (Fig. 8). A slight upward 
trend in RMSE for the years 2021–22 and 2022–23 suggests a minor 
decrease in prediction accuracy, which may be attributed to climatic 

Fig. 8. Temporal validation of tomato yield prediction model CSMs (2019–20 to 2023–24) using observed vs. predicted scatter analysis.
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variations or uncertainties in the input data. Additionally, the model 
exhibited a consistent negative bias, with values between − 1.23 and 
− 1.62, indicating a systematic underestimation of yield values. The least 
biased year was 2020–21, with a bias of − 1.23, while 2023–24 had the 
most significant underestimation at − 1.62 (Fig. 8). These outcomes 
suggest that the model parameters may require further calibration to 
minimize this systematic deviation. The NSE values ranged from 0.55 to 
0.62, indicating moderate to good performance. A value closer to 1 
would represent an ideal predictive model. While the NSE values are 
satisfactory, they underscore areas where the model could be refined. 
The year-wise performance analysis indicates that 2019–20 exhibited 
the best model performance with the highest R (0.8) and R² (0.63), 
lowest RMSE (6.75), and NSE (0.62), suggesting strong predictive ac
curacy. 2020–21 followed closely with R = 0.79 and R² = 0.62, and the 
lowest bias (− 1.23), indicating reduced underestimation, though RMSE 
(6.81) slightly increased. In 2021–22 and 2022–23, model performance 
declined slightly, with R dropping to 0.76 and R² to 0.57, while RMSE 
increased beyond 7.0, and bias also worsened, suggesting growing 
prediction uncertainty, possibly due to climatic variations or input 
dataset limitations. 2023–24 showed a slight recovery, with R = 0.79 
and R² = 0.62, although bias (− 1.62) reached its highest, indicating the 
strongest underestimation of yield. The results indicate that the model 
successfully predicts tomato crop yield, although further improvements 
are necessary to enhance its accuracy. The final overall year plot rep
resents the cumulative predictive performance of the DSSAT-CROPGRO 
model using combined datasets from the years 2019–2023. A strong 
correlation coefficient (R = 0.78) and a coefficient of determination (R² 
= 0.60) indicate that the model captures a substantial proportion of the 
variability in observed tomato yields. The error metrics—MAE = 5.9, 
RMSE = 6.93, and Bias = − 1.43—highlight the model’s consistent ac
curacy and slight underestimation tendency. The Nash–Sutcliffe Effi
ciency (NSE = 0.59) further confirms the model’s robustness and its 
applicability in real-world scenarios (Fig. 8). To improve yield pre
dictions in the context of changing climatic conditions, it may be 
beneficial to incorporate climate resilience factors and fine-tune the 
DSSAT model with updated climate projections. Future work should 
focus on adjusting model parameters or including additional factors 
such as fertilizer application rates, pest influences, or microclimatic 
conditions [87].

4.4. Analysis of simulated yield changes

The projected yield changes for tomato crops under different climate 
models and future timeframes were analyzed for two scenarios (SSP2 4.5 
and SSP5 8.5) relative to the baseline period (1980–2009). The findings 
indicate significant declines in yield across all climate models and future 
time horizons, with the magnitude of decline varying based on the 
scenario and timeframe.

Under the SSP2–4.5 scenario, all climate models consistently project 
a declining trend in tomato yield across the near (2010–2039), mid 
(2040–2069), and far future (2070–2099) periods. The most pro
nounced reductions occur in the near term, with models such as MPI- 
ESM-1–2-HR and ACCESS-CM2 estimating losses exceeding 44 %. 
Although the decline persists into the mid- and far-future periods, 
models like FGOALS_g3 and ESM project relatively lower reductions, 
suggesting a potential stabilization in yield losses under moderate- 
emission conditions. In the far future, yield changes range from 
− 16.11 % (ESM) to − 34.11 % (MIROC6), indicating some degree of 
model-predicted resilience (Fig. 9a). In contrast, the SSP5–8.5 scenario 
presents a more severe impact across all timeframes. Near-future pro
jections show yield declines between − 36.03 % (CMCC-ESM2) and 
− 48.23 % (ACCESS-CM2), largely driven by intensified heat and water 
stress during critical phenophases. This pattern continues through mid- 
century, with MPI-ESM-1–2-HR and ACCESS-CM2 projecting sustained 
losses above 40 %. Interestingly, a few models (e.g., CMCC-ESM2 at 
− 6.35 % and ESM at − 5.21 %) simulate attenuated yield losses in the far 

future, possibly reflecting physiological acclimation or the fertilization 
effect of elevated atmospheric CO₂ [88]. However, substantial re
ductions persist in models like MPI-ESM-1–2-HR (− 24.37 %) and 
MIROC6 (− 31.07 %), suggesting that extreme temperatures, altered 
precipitation regimes, and moisture stress will likely offset any potential 
CO₂-related gains (Fig. 9b).

Regionally, yield losses are most pronounced in the eastern and 
northern ACZs during the mid- and far-future periods, where Ts 
frequently exceed optimal thresholds for flowering and fruit set 
(>30–35 ◦C), PPT becomes increasingly erratic, and Srad declines [16, 
63,68]. These combined stressors accelerate crop development, shorten 
reproductive duration, and reduce assimilate translocation, ultimately 
impairing yield formation. Conversely, central and western MP show 
relatively stable yield trends in the near term under SSP2–4.5, benefit
ting from more favorable thermal and hydrological conditions. Although 
some far-future simulations under SSP5–8.5 indicate reduced losses, the 
extent to which CO₂ fertilization may counterbalance climatic stress 
remains uncertain and requires further field-based validation [89].

Inclusive, these findings underscore the critical need for spatially 
targeted adaptation strategies, including optimized sowing dates, 
deployment of heat- and drought-tolerant cultivars, precision irrigation, 
and improved nutrient management. Furthermore, the substantial 
variation across climate models highlights the importance of ensemble- 
based approaches for robust impact assessments. Integrating machine 
learning with multi-model simulations may further enhance predictive 
accuracy and support informed decision-making for climate-resilient 
tomato production [7].

4.5. Adaptation strategies and recommendations for climate-resilient 
tomato cultivation

Based on the simulated PS and yield responses under future climate 
scenarios, several evidence-based adaptation strategies are recom
mended to mitigate the adverse effects of climate change on tomato 
production in Central India (MP). 

1. Optimal Planting Window Adjustment: The advancement or delay 
of key phenophases under warming scenarios suggests that adjusting 
sowing dates could help avoid exposure to high-T stress during 
sensitive stages like flowering and fruit set ([7,90]). Simulation re
sults indicate that shifting the planting window 2–3 weeks earlier in 
high-risk zones may preserve yield potential under SSP5–8.5.

2. Climate-Resilient Variety Selection: Introducing heat-tolerant and 
drought-resistant tomato cultivars, particularly for regions projected 
to experience increased thermal and moisture stress, is essential. 
Cultivars with enhanced pollen viability at higher Ts and longer 
reproductive durations could buffer against premature senescence 
[16,18].

3. Water and Nutrient Management: Strategic irrigation manage
ment, including drip irrigation and mulching, can improve water-use 
efficiency and reduce evapotranspiration losses. Supplementary 
nutrient applications, especially potassium, may enhance stress 
tolerance and fruit quality under elevated CO₂ and T regimes [17].

4. Policy and Institutional Support: Region-specific agro-advisories, 
phenology monitoring systems, and climate-smart subsidies for 
infrastructure (e.g., protected cultivation, soil moisture sensors) 
should be integrated into state-level agricultural policies. In
vestments in climate-resilient extension services can empower 
farmers to implement adaptive practices effectively [91,92].

These strategies, based on model-simulated yield responses to pro
jected climate scenarios, offer actionable ways to strengthen the resil
ience of tomato production systems in Central India. Rooted in the 
outputs of the DSSAT-CROPGRO-Tomato model, they provide specific 
interventions to maintain productivity amid increasing climate vari
ability, especially in the near- and mid-term futures.
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Fig. 9. Changes in Projected Tomato Yields ( %) Across Various Climate Models and Timeframes Under (a) SSP2 4.5 and (b) SSP5 8.5 Scenarios, Highlighting the 
Effects of Climate Variability from the Near Future (2010–2039) to the Distant Future (2070–2099) Relative to the Baseline (1980–2009).
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5. Conclusion

This research revealed distinct and substantial phenological shifts in 
tomato crops predominantly influenced by elevated Ts, modified Srad, 
and varying PPT patterns under forecasted climatic scenarios. Elevated 
temperatures expedited essential developmental phases, including 
blooming and fruiting, thereby abbreviating crop cycles and perhaps 
diminishing production potential. Seasonal Tavg deviations demon
strated a notable increase under SSP2–4.5 and SSP5–8.5 scenarios for 
both mid and distant futures, mainly impacting places such as Sidhi and 
Mandla. However, minor temperature reductions were recorded in 
Jhabua and Nimar in the near future. Fluctuations in Srad affected plant 
growth rates and photosynthetic efficiency, while alterations in rainfall 
distribution significantly altered water availability, hence exacerbating 
agricultural performance and production. Srad demonstrated consider
able geographical disparity, with Mandla and Balaghat witnessing sub
stantial rises, whereas East Nimar (Burhanpur) and Bhind encountered 
dramatic declines. Rainfall patterns indicated that Jhabua is the driest 
area due to rain-shadow effects, in contrast to Mandla, which benefited 
from orographic precipitation. These climate changes significantly 
impacted tomato phenology, hastening critical developmental stages of 
Tomato crop such as anthesis (flowering) and pod (fruit) formation. The 
discrepancies across several models indicate that alterations in tem
perature and radiation affect phenological responses differently based 
on the climate projection used. The results demonstrate that tomato crop 
productivity will be considerably influenced by forthcoming climate 
scenarios, with the SSP5 8.5 scenario posing a greater risk of yield re
ductions due to severe climatic circumstances. The model demonstrated 
a robust connection between observed and anticipated yields, with R 
values ranging from 0.76 to 0.80 and R² values between 0.57 and 0.63, 
signifying substantial concordance. The MAE and RMSE values indicate 
satisfactory prediction errors. NSE values varied from 0.55 to 0.62, 
indicating moderate to good performance. These findings emphasise the 
need for specific adaptation methods, including the development of 
heat-tolerant varieties, enhancement of irrigation management, and 
modification of planting schedules to correspond with expected climate 
changes. Incorporating simulation models such as DSSAT into agricul
tural planning can markedly improve the resilience and sustainability of 
tomato production systems, hence securing food availability in the face 
of changing climatic conditions. Ongoing research centred on localised 
climate modeling and validation via comprehensive field trials will be 
essential for enhancing predictions and formulating effective adaptive 
strategies. By analyzing the timing of key growth stages in response to 
projected climate variability, this study provides essential insights that 
can be used to enhance management practices. While the findings are 
regionally focused on Central India—an agriculturally significant zone 
for tomato production; however, the insights and adaptive strategies 
proposed in this study have broader applicability to other tomato- 
growing regions facing similar climate-induced challenges worldwide.
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